人工智能驱动的能源算法交易:将隐马尔可夫模型与神经网络相结合

Tiago Monteiro
{"title":"人工智能驱动的能源算法交易:将隐马尔可夫模型与神经网络相结合","authors":"Tiago Monteiro","doi":"arxiv-2407.19858","DOIUrl":null,"url":null,"abstract":"In the field of quantitative finance, machine learning methods have become\nessential for alpha generation. This paper presents a pioneering method that\nuniquely combines Hidden Markov Models (HMM) and neural networks, creating a\ndual-model alpha generation system integrated with Black-Litterman portfolio\noptimization. The methodology, implemented on the QuantConnect platform, aims\nto predict future price movements and optimize trading strategies.\nSpecifically, it filters for highly liquid, top-cap energy stocks to ensure\nstable and predictable performance while also accounting for broker payments.\nQuantConnect was selected because of its robust framework and to guarantee\nexperimental reproducibility. The algorithm achieved a 31% return between June\n1, 2023, and January 1, 2024, with a Sharpe ratio of 1.669, demonstrating its\npotential. The findings suggest significant improvements in trading strategy\nperformance through the combined use of the HMM and neural networks. This study\nexplores the architecture of the algorithm, data pre-processing techniques,\nmodel training procedures, and performance evaluation, highlighting its\npractical applicability and effectiveness in real-world trading environments.\nThe full code and backtesting data are available under the MIT license.","PeriodicalId":501172,"journal":{"name":"arXiv - STAT - Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-Powered Energy algorithmic Trading: Integrating Hidden Markov Models with Neural Networks\",\"authors\":\"Tiago Monteiro\",\"doi\":\"arxiv-2407.19858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of quantitative finance, machine learning methods have become\\nessential for alpha generation. This paper presents a pioneering method that\\nuniquely combines Hidden Markov Models (HMM) and neural networks, creating a\\ndual-model alpha generation system integrated with Black-Litterman portfolio\\noptimization. The methodology, implemented on the QuantConnect platform, aims\\nto predict future price movements and optimize trading strategies.\\nSpecifically, it filters for highly liquid, top-cap energy stocks to ensure\\nstable and predictable performance while also accounting for broker payments.\\nQuantConnect was selected because of its robust framework and to guarantee\\nexperimental reproducibility. The algorithm achieved a 31% return between June\\n1, 2023, and January 1, 2024, with a Sharpe ratio of 1.669, demonstrating its\\npotential. The findings suggest significant improvements in trading strategy\\nperformance through the combined use of the HMM and neural networks. This study\\nexplores the architecture of the algorithm, data pre-processing techniques,\\nmodel training procedures, and performance evaluation, highlighting its\\npractical applicability and effectiveness in real-world trading environments.\\nThe full code and backtesting data are available under the MIT license.\",\"PeriodicalId\":501172,\"journal\":{\"name\":\"arXiv - STAT - Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.19858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在量化金融领域,机器学习方法已成为阿尔法生成的关键。本文介绍了一种开创性的方法,它将隐马尔可夫模型(HMM)和神经网络独特地结合在一起,创建了与布莱克-利特曼投资组合优化相结合的双模型阿尔法生成系统。该方法在 QuantConnect 平台上实施,旨在预测未来的价格走势并优化交易策略。具体而言,该方法筛选流动性高、市值最大的能源股,以确保稳定、可预测的业绩,同时还考虑到经纪人的支付。之所以选择 QuantConnect,是因为它拥有稳健的框架,可以保证实验的可重复性。该算法在 2023 年 6 月 1 日至 2024 年 1 月 1 日期间取得了 31% 的回报率,夏普比率为 1.669,显示了其潜力。研究结果表明,通过结合使用 HMM 和神经网络,交易策略的性能得到了明显改善。本研究探讨了该算法的架构、数据预处理技术、模型训练程序和性能评估,强调了该算法在真实交易环境中的实用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI-Powered Energy algorithmic Trading: Integrating Hidden Markov Models with Neural Networks
In the field of quantitative finance, machine learning methods have become essential for alpha generation. This paper presents a pioneering method that uniquely combines Hidden Markov Models (HMM) and neural networks, creating a dual-model alpha generation system integrated with Black-Litterman portfolio optimization. The methodology, implemented on the QuantConnect platform, aims to predict future price movements and optimize trading strategies. Specifically, it filters for highly liquid, top-cap energy stocks to ensure stable and predictable performance while also accounting for broker payments. QuantConnect was selected because of its robust framework and to guarantee experimental reproducibility. The algorithm achieved a 31% return between June 1, 2023, and January 1, 2024, with a Sharpe ratio of 1.669, demonstrating its potential. The findings suggest significant improvements in trading strategy performance through the combined use of the HMM and neural networks. This study explores the architecture of the algorithm, data pre-processing techniques, model training procedures, and performance evaluation, highlighting its practical applicability and effectiveness in real-world trading environments. The full code and backtesting data are available under the MIT license.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信