通过新的增强型非展开映射的定点存在结果及其在延迟微分方程中的应用

IF 2.4 3区 数学 Q1 MATHEMATICS
R. Sri Bharathi, Ashis Bera
{"title":"通过新的增强型非展开映射的定点存在结果及其在延迟微分方程中的应用","authors":"R. Sri Bharathi, Ashis Bera","doi":"10.1007/s12190-024-02162-9","DOIUrl":null,"url":null,"abstract":"<p>In this article, we introduce an enriched <span>\\(\\omega \\)</span>-Reich–Suzuki type nonexpansive mapping and provide a couple of numerical examples to verify the existence of enriched <span>\\(\\omega \\)</span>-Reich–Suzuki type nonexpansive maps. Notably, the Z-iteration method has been shown to have faster convergence rates than some well-known iteration approaches. We establish both strong and weak convergence of enriched <span>\\(\\omega \\)</span>-Reich–Suzuki type nonexpansive mapping using the powerful Z-iteration technique. Also, we provide an application to approximate the solution of a delay differential equation and presenting an illustrative numerical example to validate our findings.\n</p>","PeriodicalId":15034,"journal":{"name":"Journal of Applied Mathematics and Computing","volume":"10 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of fixed points results via new enriched type of nonexpansive maps and application to delay differential equations\",\"authors\":\"R. Sri Bharathi, Ashis Bera\",\"doi\":\"10.1007/s12190-024-02162-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we introduce an enriched <span>\\\\(\\\\omega \\\\)</span>-Reich–Suzuki type nonexpansive mapping and provide a couple of numerical examples to verify the existence of enriched <span>\\\\(\\\\omega \\\\)</span>-Reich–Suzuki type nonexpansive maps. Notably, the Z-iteration method has been shown to have faster convergence rates than some well-known iteration approaches. We establish both strong and weak convergence of enriched <span>\\\\(\\\\omega \\\\)</span>-Reich–Suzuki type nonexpansive mapping using the powerful Z-iteration technique. Also, we provide an application to approximate the solution of a delay differential equation and presenting an illustrative numerical example to validate our findings.\\n</p>\",\"PeriodicalId\":15034,\"journal\":{\"name\":\"Journal of Applied Mathematics and Computing\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mathematics and Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12190-024-02162-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02162-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们介绍了一种富集(\omega \)-Reich-Suzuki型非膨胀映射,并提供了几个数值例子来验证富集(\omega \)-Reich-Suzuki型非膨胀映射的存在性。值得注意的是,Z-迭代法比一些著名的迭代法具有更快的收敛速度。我们利用强大的 Z-iteration 技术建立了富集(\omega \)-Reich-Suzuki 型无穷映射的强收敛性和弱收敛性。此外,我们还提供了一个近似求解延迟微分方程的应用,并给出了一个说明性的数值例子来验证我们的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Existence of fixed points results via new enriched type of nonexpansive maps and application to delay differential equations

Existence of fixed points results via new enriched type of nonexpansive maps and application to delay differential equations

In this article, we introduce an enriched \(\omega \)-Reich–Suzuki type nonexpansive mapping and provide a couple of numerical examples to verify the existence of enriched \(\omega \)-Reich–Suzuki type nonexpansive maps. Notably, the Z-iteration method has been shown to have faster convergence rates than some well-known iteration approaches. We establish both strong and weak convergence of enriched \(\omega \)-Reich–Suzuki type nonexpansive mapping using the powerful Z-iteration technique. Also, we provide an application to approximate the solution of a delay differential equation and presenting an illustrative numerical example to validate our findings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Mathematics and Computing
Journal of Applied Mathematics and Computing Mathematics-Computational Mathematics
CiteScore
4.20
自引率
4.50%
发文量
131
期刊介绍: JAMC is a broad based journal covering all branches of computational or applied mathematics with special encouragement to researchers in theoretical computer science and mathematical computing. Major areas, such as numerical analysis, discrete optimization, linear and nonlinear programming, theory of computation, control theory, theory of algorithms, computational logic, applied combinatorics, coding theory, cryptograhics, fuzzy theory with applications, differential equations with applications are all included. A large variety of scientific problems also necessarily involve Algebra, Analysis, Geometry, Probability and Statistics and so on. The journal welcomes research papers in all branches of mathematics which have some bearing on the application to scientific problems, including papers in the areas of Actuarial Science, Mathematical Biology, Mathematical Economics and Finance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信