Simon Raynaud, Marc Hallier, Stephane Dreano, Brice Felden, Yoann Augagneur, Helene Le Pabic
{"title":"抗病毒葡萄球菌 sRNA SprC 可调控 CzrB 外排泵,使其适应锌毒性反应","authors":"Simon Raynaud, Marc Hallier, Stephane Dreano, Brice Felden, Yoann Augagneur, Helene Le Pabic","doi":"10.1261/rna.080122.124","DOIUrl":null,"url":null,"abstract":"Bacterial regulatory RNAs (sRNAs) are important players to control gene expression. In <em>S. aureus</em>, SprC is an antivirulent <em>trans</em>-acting sRNA known to base-pair with the major autolysin <em>atl</em> mRNA, preventing its translation. Using MS2-affinity purification coupled with RNA sequencing (MAPS), we looked for its sRNA-RNA interactome and identified fourteen novel mRNA targets. <em>In vitro</em> biochemical investigations revealed that SprC binds two of them, <em>czrB</em> and <em>deoD</em>, and uses a single accessible region to regulate its targets, including Atl translation. Unlike Atl regulation, the characterization of the SprC-<em>czrB</em> interaction pinpointed a destabilization of <em>czrAB</em> co-transcript,leading to a decrease of the mRNA level that impaired CzrB Zinc efflux pump expression. On a physiological stand-point, we showed that SprC expression is detrimental to combat against Zinc toxicity. In addition, phagocyctosis assays revealed a significant, but moderate, increase of czrB mRNA level in a <em>sprC</em>-deleted mutant, indicating a functional link between SprC and\t<em>czrB</em> upon internalization in macrophages, and suggesting a role in resistance to both oxidative and Zinc burst. Altogether, our data uncover a novel pathway in which SprC is implicated, highlighting the multiple strategies employed by <em>S. aureus</em> to balance virulence using an RNA regulator.","PeriodicalId":21401,"journal":{"name":"RNA","volume":"10 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The antivirulent Staphylococcal sRNA SprC regulates CzrB efflux pump to adapt its response to Zinc toxicity\",\"authors\":\"Simon Raynaud, Marc Hallier, Stephane Dreano, Brice Felden, Yoann Augagneur, Helene Le Pabic\",\"doi\":\"10.1261/rna.080122.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bacterial regulatory RNAs (sRNAs) are important players to control gene expression. In <em>S. aureus</em>, SprC is an antivirulent <em>trans</em>-acting sRNA known to base-pair with the major autolysin <em>atl</em> mRNA, preventing its translation. Using MS2-affinity purification coupled with RNA sequencing (MAPS), we looked for its sRNA-RNA interactome and identified fourteen novel mRNA targets. <em>In vitro</em> biochemical investigations revealed that SprC binds two of them, <em>czrB</em> and <em>deoD</em>, and uses a single accessible region to regulate its targets, including Atl translation. Unlike Atl regulation, the characterization of the SprC-<em>czrB</em> interaction pinpointed a destabilization of <em>czrAB</em> co-transcript,leading to a decrease of the mRNA level that impaired CzrB Zinc efflux pump expression. On a physiological stand-point, we showed that SprC expression is detrimental to combat against Zinc toxicity. In addition, phagocyctosis assays revealed a significant, but moderate, increase of czrB mRNA level in a <em>sprC</em>-deleted mutant, indicating a functional link between SprC and\\t<em>czrB</em> upon internalization in macrophages, and suggesting a role in resistance to both oxidative and Zinc burst. Altogether, our data uncover a novel pathway in which SprC is implicated, highlighting the multiple strategies employed by <em>S. aureus</em> to balance virulence using an RNA regulator.\",\"PeriodicalId\":21401,\"journal\":{\"name\":\"RNA\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RNA\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1261/rna.080122.124\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1261/rna.080122.124","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
The antivirulent Staphylococcal sRNA SprC regulates CzrB efflux pump to adapt its response to Zinc toxicity
Bacterial regulatory RNAs (sRNAs) are important players to control gene expression. In S. aureus, SprC is an antivirulent trans-acting sRNA known to base-pair with the major autolysin atl mRNA, preventing its translation. Using MS2-affinity purification coupled with RNA sequencing (MAPS), we looked for its sRNA-RNA interactome and identified fourteen novel mRNA targets. In vitro biochemical investigations revealed that SprC binds two of them, czrB and deoD, and uses a single accessible region to regulate its targets, including Atl translation. Unlike Atl regulation, the characterization of the SprC-czrB interaction pinpointed a destabilization of czrAB co-transcript,leading to a decrease of the mRNA level that impaired CzrB Zinc efflux pump expression. On a physiological stand-point, we showed that SprC expression is detrimental to combat against Zinc toxicity. In addition, phagocyctosis assays revealed a significant, but moderate, increase of czrB mRNA level in a sprC-deleted mutant, indicating a functional link between SprC and czrB upon internalization in macrophages, and suggesting a role in resistance to both oxidative and Zinc burst. Altogether, our data uncover a novel pathway in which SprC is implicated, highlighting the multiple strategies employed by S. aureus to balance virulence using an RNA regulator.
期刊介绍:
RNA is a monthly journal which provides rapid publication of significant original research in all areas of RNA structure and function in eukaryotic, prokaryotic, and viral systems. It covers a broad range of subjects in RNA research, including: structural analysis by biochemical or biophysical means; mRNA structure, function and biogenesis; alternative processing: cis-acting elements and trans-acting factors; ribosome structure and function; translational control; RNA catalysis; tRNA structure, function, biogenesis and identity; RNA editing; rRNA structure, function and biogenesis; RNA transport and localization; regulatory RNAs; large and small RNP structure, function and biogenesis; viral RNA metabolism; RNA stability and turnover; in vitro evolution; and RNA chemistry.