Alexander Richard Kaye, Giorgio Guzzetta, Michael Tildesley, Robin Thompson
{"title":"量化传染病流行风险:季节性病原体的实用方法","authors":"Alexander Richard Kaye, Giorgio Guzzetta, Michael Tildesley, Robin Thompson","doi":"10.1101/2024.07.30.24311220","DOIUrl":null,"url":null,"abstract":"For many infectious diseases, the risk of outbreaks varies seasonally. If a pathogen is usually absent from a host population, a key public health policy question is whether the pathogen's arrival will initiate local transmission, which depends on the season in which arrival occurs. This question can be addressed by estimating the probability of a major outbreak (the probability that introduced cases will initiate sustained local transmission). A standard approach for inferring this probability exists for seasonal pathogens (involving calculating the Case Epidemic Risk; CER) based on the mathematical theory of branching processes. Under that theory, the probability of pathogen extinction is estimated, neglecting depletion of susceptible individuals. The CER is then one minus the extinction probability. However, as we show, if transmission cannot occur for long periods of the year (e.g., over winter or over summer), the pathogen will inevitably go extinct, leading to a CER of zero even if seasonal outbreaks can occur. This renders the CER uninformative in those scenarios. We therefore devise an alternative approach for inferring outbreak risks for seasonal pathogens (involving calculating the Threshold Epidemic Risk; TER). Estimation of the TER involves calculating the probability that introduced cases will initiate a local outbreak in which a threshold number of infections is exceeded before outbreak extinction. For simple seasonal epidemic models, such as the stochastic Susceptible-Infectious-Removed model, the TER can be calculated numerically (without model simulations). For more complex models, such as stochastic host-vector models, the TER can be estimated using model simulations. We demonstrate the application of our approach by considering Chikungunya virus in northern Italy as a case study. In that context, transmission is most likely in summer, when environmental conditions promote vector abundance. We show that the TER provides more useful assessments of outbreak risks than the CER, enabling practically relevant risk quantification for seasonal pathogens.","PeriodicalId":501071,"journal":{"name":"medRxiv - Epidemiology","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying infectious disease epidemic risks: A practical approach for seasonal pathogens\",\"authors\":\"Alexander Richard Kaye, Giorgio Guzzetta, Michael Tildesley, Robin Thompson\",\"doi\":\"10.1101/2024.07.30.24311220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For many infectious diseases, the risk of outbreaks varies seasonally. If a pathogen is usually absent from a host population, a key public health policy question is whether the pathogen's arrival will initiate local transmission, which depends on the season in which arrival occurs. This question can be addressed by estimating the probability of a major outbreak (the probability that introduced cases will initiate sustained local transmission). A standard approach for inferring this probability exists for seasonal pathogens (involving calculating the Case Epidemic Risk; CER) based on the mathematical theory of branching processes. Under that theory, the probability of pathogen extinction is estimated, neglecting depletion of susceptible individuals. The CER is then one minus the extinction probability. However, as we show, if transmission cannot occur for long periods of the year (e.g., over winter or over summer), the pathogen will inevitably go extinct, leading to a CER of zero even if seasonal outbreaks can occur. This renders the CER uninformative in those scenarios. We therefore devise an alternative approach for inferring outbreak risks for seasonal pathogens (involving calculating the Threshold Epidemic Risk; TER). Estimation of the TER involves calculating the probability that introduced cases will initiate a local outbreak in which a threshold number of infections is exceeded before outbreak extinction. For simple seasonal epidemic models, such as the stochastic Susceptible-Infectious-Removed model, the TER can be calculated numerically (without model simulations). For more complex models, such as stochastic host-vector models, the TER can be estimated using model simulations. We demonstrate the application of our approach by considering Chikungunya virus in northern Italy as a case study. In that context, transmission is most likely in summer, when environmental conditions promote vector abundance. We show that the TER provides more useful assessments of outbreak risks than the CER, enabling practically relevant risk quantification for seasonal pathogens.\",\"PeriodicalId\":501071,\"journal\":{\"name\":\"medRxiv - Epidemiology\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.30.24311220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.30.24311220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantifying infectious disease epidemic risks: A practical approach for seasonal pathogens
For many infectious diseases, the risk of outbreaks varies seasonally. If a pathogen is usually absent from a host population, a key public health policy question is whether the pathogen's arrival will initiate local transmission, which depends on the season in which arrival occurs. This question can be addressed by estimating the probability of a major outbreak (the probability that introduced cases will initiate sustained local transmission). A standard approach for inferring this probability exists for seasonal pathogens (involving calculating the Case Epidemic Risk; CER) based on the mathematical theory of branching processes. Under that theory, the probability of pathogen extinction is estimated, neglecting depletion of susceptible individuals. The CER is then one minus the extinction probability. However, as we show, if transmission cannot occur for long periods of the year (e.g., over winter or over summer), the pathogen will inevitably go extinct, leading to a CER of zero even if seasonal outbreaks can occur. This renders the CER uninformative in those scenarios. We therefore devise an alternative approach for inferring outbreak risks for seasonal pathogens (involving calculating the Threshold Epidemic Risk; TER). Estimation of the TER involves calculating the probability that introduced cases will initiate a local outbreak in which a threshold number of infections is exceeded before outbreak extinction. For simple seasonal epidemic models, such as the stochastic Susceptible-Infectious-Removed model, the TER can be calculated numerically (without model simulations). For more complex models, such as stochastic host-vector models, the TER can be estimated using model simulations. We demonstrate the application of our approach by considering Chikungunya virus in northern Italy as a case study. In that context, transmission is most likely in summer, when environmental conditions promote vector abundance. We show that the TER provides more useful assessments of outbreak risks than the CER, enabling practically relevant risk quantification for seasonal pathogens.