Akuze Joseph Waiswa, Bancy Ngatia, Samson Yahannes Amare, Phillip Wanduru, Grieven P Otieno, Rornald Muhumuza Kananura, Fati Kirakoya-Samadoulougou, Agbessi Amouzou, Abiy Seifu Estifanos, Eric O Ohuma
{"title":"释放数据科学在改善非洲孕产妇、新生儿和儿童健康方面的变革潜力:范围界定审查协议","authors":"Akuze Joseph Waiswa, Bancy Ngatia, Samson Yahannes Amare, Phillip Wanduru, Grieven P Otieno, Rornald Muhumuza Kananura, Fati Kirakoya-Samadoulougou, Agbessi Amouzou, Abiy Seifu Estifanos, Eric O Ohuma","doi":"10.1101/2024.07.31.24311286","DOIUrl":null,"url":null,"abstract":"ABSTRACT Introduction: Application of data science in Maternal, Newborn, and Child Health (MNCH) across Africa is variable with limited documentation. Despite efforts to reduce preventable MNCH morbidity and mortality, progress remains slow. Accurate data is crucial for holding countries accountable, tracking progress towards realisation of SDG3 targets on MNCH, and guiding interventions. Data science can improve data availability, quality, healthcare provision, and decision-making for MNCH programs. We aim to map and synthesise use cases of data science in MNCH across Africa.\nMethods and Analysis: We will develop a conceptual framework encompassing seven domains: Infrastructure and Systemic Challenges, Data Acquisition, Data Quality, Governance, Regulatory Dynamics and Policy, Technological Innovations and Digital Health, Capacity Development, Human Capital, Collaborative and Strategic Frameworks, data analysis, visualization, dissemination and Recommendations for Implementation and Scaling. A scoping review methodology will be used including literature searches in seven databases, grey literature sources and data extraction from the Digital Health Initiatives database. Three reviewers will screen articles and extract data. We will synthesise and present data narratively, and use tables, figures, and maps. Our structured search strategy across academic databases and grey literature sources will find relevant studies on data science in MNCH in Africa. Ethics and dissemination: This scoping review require no formal ethics, because no primary data will be collected. Findings will showcase gaps, opportunities, advances, innovations, implementation, areas needing additional research and propose next steps for integration of data science in MNCH programs in Africa. The findings' implications will be examined in relation to possible methods for enhancing data science in MNCH settings, such as community, and clinical settings, monitoring and evaluation. This study will illuminate data science applications in addressing MNCH issues and provide a holistic view of areas where gaps exist and where there are opportunities to leverage and tap into what already exists. The work will be relevant for stakeholders, policymakers, and researchers in the MNCH field to inform planning. Findings will be disseminated through peer-reviewed journals, conferences, policy briefs, blogs, and social media platforms in Africa.\nKeywords: Data Science, Maternal Health, Newborn and Perinatal Health, Child Health, Africa","PeriodicalId":501071,"journal":{"name":"medRxiv - Epidemiology","volume":"96 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking the transformative potential of data science in improving maternal, newborn and child health in Africa: A scoping review protocol\",\"authors\":\"Akuze Joseph Waiswa, Bancy Ngatia, Samson Yahannes Amare, Phillip Wanduru, Grieven P Otieno, Rornald Muhumuza Kananura, Fati Kirakoya-Samadoulougou, Agbessi Amouzou, Abiy Seifu Estifanos, Eric O Ohuma\",\"doi\":\"10.1101/2024.07.31.24311286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Introduction: Application of data science in Maternal, Newborn, and Child Health (MNCH) across Africa is variable with limited documentation. Despite efforts to reduce preventable MNCH morbidity and mortality, progress remains slow. Accurate data is crucial for holding countries accountable, tracking progress towards realisation of SDG3 targets on MNCH, and guiding interventions. Data science can improve data availability, quality, healthcare provision, and decision-making for MNCH programs. We aim to map and synthesise use cases of data science in MNCH across Africa.\\nMethods and Analysis: We will develop a conceptual framework encompassing seven domains: Infrastructure and Systemic Challenges, Data Acquisition, Data Quality, Governance, Regulatory Dynamics and Policy, Technological Innovations and Digital Health, Capacity Development, Human Capital, Collaborative and Strategic Frameworks, data analysis, visualization, dissemination and Recommendations for Implementation and Scaling. A scoping review methodology will be used including literature searches in seven databases, grey literature sources and data extraction from the Digital Health Initiatives database. Three reviewers will screen articles and extract data. We will synthesise and present data narratively, and use tables, figures, and maps. Our structured search strategy across academic databases and grey literature sources will find relevant studies on data science in MNCH in Africa. Ethics and dissemination: This scoping review require no formal ethics, because no primary data will be collected. Findings will showcase gaps, opportunities, advances, innovations, implementation, areas needing additional research and propose next steps for integration of data science in MNCH programs in Africa. The findings' implications will be examined in relation to possible methods for enhancing data science in MNCH settings, such as community, and clinical settings, monitoring and evaluation. This study will illuminate data science applications in addressing MNCH issues and provide a holistic view of areas where gaps exist and where there are opportunities to leverage and tap into what already exists. The work will be relevant for stakeholders, policymakers, and researchers in the MNCH field to inform planning. Findings will be disseminated through peer-reviewed journals, conferences, policy briefs, blogs, and social media platforms in Africa.\\nKeywords: Data Science, Maternal Health, Newborn and Perinatal Health, Child Health, Africa\",\"PeriodicalId\":501071,\"journal\":{\"name\":\"medRxiv - Epidemiology\",\"volume\":\"96 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.31.24311286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.31.24311286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unlocking the transformative potential of data science in improving maternal, newborn and child health in Africa: A scoping review protocol
ABSTRACT Introduction: Application of data science in Maternal, Newborn, and Child Health (MNCH) across Africa is variable with limited documentation. Despite efforts to reduce preventable MNCH morbidity and mortality, progress remains slow. Accurate data is crucial for holding countries accountable, tracking progress towards realisation of SDG3 targets on MNCH, and guiding interventions. Data science can improve data availability, quality, healthcare provision, and decision-making for MNCH programs. We aim to map and synthesise use cases of data science in MNCH across Africa.
Methods and Analysis: We will develop a conceptual framework encompassing seven domains: Infrastructure and Systemic Challenges, Data Acquisition, Data Quality, Governance, Regulatory Dynamics and Policy, Technological Innovations and Digital Health, Capacity Development, Human Capital, Collaborative and Strategic Frameworks, data analysis, visualization, dissemination and Recommendations for Implementation and Scaling. A scoping review methodology will be used including literature searches in seven databases, grey literature sources and data extraction from the Digital Health Initiatives database. Three reviewers will screen articles and extract data. We will synthesise and present data narratively, and use tables, figures, and maps. Our structured search strategy across academic databases and grey literature sources will find relevant studies on data science in MNCH in Africa. Ethics and dissemination: This scoping review require no formal ethics, because no primary data will be collected. Findings will showcase gaps, opportunities, advances, innovations, implementation, areas needing additional research and propose next steps for integration of data science in MNCH programs in Africa. The findings' implications will be examined in relation to possible methods for enhancing data science in MNCH settings, such as community, and clinical settings, monitoring and evaluation. This study will illuminate data science applications in addressing MNCH issues and provide a holistic view of areas where gaps exist and where there are opportunities to leverage and tap into what already exists. The work will be relevant for stakeholders, policymakers, and researchers in the MNCH field to inform planning. Findings will be disseminated through peer-reviewed journals, conferences, policy briefs, blogs, and social media platforms in Africa.
Keywords: Data Science, Maternal Health, Newborn and Perinatal Health, Child Health, Africa