从复杂网络分析中推断金融股回报相关性

Ixandra Achitouv
{"title":"从复杂网络分析中推断金融股回报相关性","authors":"Ixandra Achitouv","doi":"arxiv-2407.20380","DOIUrl":null,"url":null,"abstract":"Financial stock returns correlations have been studied in the prism of random\nmatrix theory, to distinguish the signal from the \"noise\". Eigenvalues of the\nmatrix that are above the rescaled Marchenko Pastur distribution can be\ninterpreted as collective modes behavior while the modes under are usually\nconsidered as noise. In this analysis we use complex network analysis to\nsimulate the \"noise\" and the \"market\" component of the return correlations, by\nintroducing some meaningful correlations in simulated geometric Brownian motion\nfor the stocks. We find that the returns correlation matrix is dominated by\nstocks with high eigenvector centrality and clustering found in the network. We\nthen use simulated \"market\" random walks to build an optimal portfolio and find\nthat the overall return performs better than using the historical mean-variance\ndata, up to 50% on short time scale.","PeriodicalId":501139,"journal":{"name":"arXiv - QuantFin - Statistical Finance","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inferring financial stock returns correlation from complex network analysis\",\"authors\":\"Ixandra Achitouv\",\"doi\":\"arxiv-2407.20380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Financial stock returns correlations have been studied in the prism of random\\nmatrix theory, to distinguish the signal from the \\\"noise\\\". Eigenvalues of the\\nmatrix that are above the rescaled Marchenko Pastur distribution can be\\ninterpreted as collective modes behavior while the modes under are usually\\nconsidered as noise. In this analysis we use complex network analysis to\\nsimulate the \\\"noise\\\" and the \\\"market\\\" component of the return correlations, by\\nintroducing some meaningful correlations in simulated geometric Brownian motion\\nfor the stocks. We find that the returns correlation matrix is dominated by\\nstocks with high eigenvector centrality and clustering found in the network. We\\nthen use simulated \\\"market\\\" random walks to build an optimal portfolio and find\\nthat the overall return performs better than using the historical mean-variance\\ndata, up to 50% on short time scale.\",\"PeriodicalId\":501139,\"journal\":{\"name\":\"arXiv - QuantFin - Statistical Finance\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Statistical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Statistical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了区分信号和 "噪音",人们从 randommatrix 理论的棱镜中研究了金融股票收益相关性。矩阵中高于马琴科-帕斯特分布的特征值可被解释为集体模式行为,而低于该分布的模式通常被视为噪声。在本分析中,我们使用复杂网络分析来模拟收益相关性中的 "噪声 "和 "市场 "部分,在模拟股票的几何布朗运动中引入一些有意义的相关性。我们发现,收益相关矩阵主要由网络中具有高特征向量中心性和聚类的股票构成。我们使用模拟的 "市场 "随机漫步来构建最优投资组合,发现整体回报率比使用历史均值-方差数据要好,在短时间内最高可达 50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inferring financial stock returns correlation from complex network analysis
Financial stock returns correlations have been studied in the prism of random matrix theory, to distinguish the signal from the "noise". Eigenvalues of the matrix that are above the rescaled Marchenko Pastur distribution can be interpreted as collective modes behavior while the modes under are usually considered as noise. In this analysis we use complex network analysis to simulate the "noise" and the "market" component of the return correlations, by introducing some meaningful correlations in simulated geometric Brownian motion for the stocks. We find that the returns correlation matrix is dominated by stocks with high eigenvector centrality and clustering found in the network. We then use simulated "market" random walks to build an optimal portfolio and find that the overall return performs better than using the historical mean-variance data, up to 50% on short time scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信