凸多边形域边界上的$L^q$规范中的图兰型振荡不等式

Polina Glazyrina, Szilárd Gy. Révész
{"title":"凸多边形域边界上的$L^q$规范中的图兰型振荡不等式","authors":"Polina Glazyrina, Szilárd Gy. Révész","doi":"arxiv-2407.18404","DOIUrl":null,"url":null,"abstract":"In 1939 P\\'al Tur\\'an and J\\'anos Er\\H{o}d initiated the study of lower\nestimations of maximum norms of derivatives of polynomials, in terms of the\nmaximum norms of the polynomials themselves, on convex domains of the complex\nplane. As a matter of normalization they considered the family\n$\\mathcal{P}_n(K)$ of degree $n$ polynomials with all zeros lying in the given\nconvex, compact subset $K\\Subset {\\mathbb C}$. While Tur\\'an obtained the first\nresults for the interval $I:=[-1,1]$ and the disk $D:=\\{ z\\in {\\mathbb C}~:~\n|z|\\le 1\\}$, Er\\H{o}d extended investigations to other compact convex domains,\ntoo. The order of the optimal constant was found to be $\\sqrt{n}$ for $I$ and\n$n$ for $D$. It took until 2006 to clarify that all compact convex\n\\emph{domains} (with nonempty interior), follow the pattern of the disk, and\nadmit an order $n$ inequality. For $L^q(\\partial K)$ norms with any $1\\le q <\\infty$ we obtained order $n$\nresults for various classes of domains. Further, in the generality of all\nconvex, compact domains we could show a $c n/\\log n$ lower bound together with\nan $O(n)$ upper bound for the optimal constant. Also, we conjectured that all\ncompact convex domains admit an order $n$ Tur\\'an type inequality. Here we\nprove this for all \\emph{polygonal} convex domains and any $0< q <\\infty$.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turán type oscillation inequalities in $L^q$ norm on the boundary of convex polygonal domains\",\"authors\":\"Polina Glazyrina, Szilárd Gy. Révész\",\"doi\":\"arxiv-2407.18404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1939 P\\\\'al Tur\\\\'an and J\\\\'anos Er\\\\H{o}d initiated the study of lower\\nestimations of maximum norms of derivatives of polynomials, in terms of the\\nmaximum norms of the polynomials themselves, on convex domains of the complex\\nplane. As a matter of normalization they considered the family\\n$\\\\mathcal{P}_n(K)$ of degree $n$ polynomials with all zeros lying in the given\\nconvex, compact subset $K\\\\Subset {\\\\mathbb C}$. While Tur\\\\'an obtained the first\\nresults for the interval $I:=[-1,1]$ and the disk $D:=\\\\{ z\\\\in {\\\\mathbb C}~:~\\n|z|\\\\le 1\\\\}$, Er\\\\H{o}d extended investigations to other compact convex domains,\\ntoo. The order of the optimal constant was found to be $\\\\sqrt{n}$ for $I$ and\\n$n$ for $D$. It took until 2006 to clarify that all compact convex\\n\\\\emph{domains} (with nonempty interior), follow the pattern of the disk, and\\nadmit an order $n$ inequality. For $L^q(\\\\partial K)$ norms with any $1\\\\le q <\\\\infty$ we obtained order $n$\\nresults for various classes of domains. Further, in the generality of all\\nconvex, compact domains we could show a $c n/\\\\log n$ lower bound together with\\nan $O(n)$ upper bound for the optimal constant. Also, we conjectured that all\\ncompact convex domains admit an order $n$ Tur\\\\'an type inequality. Here we\\nprove this for all \\\\emph{polygonal} convex domains and any $0< q <\\\\infty$.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

1939 年,P\'al Tur\'an 和 J\'anos Er\H{o}d 开始在复平面的凸域上研究用多项式本身的最大规范来降低多项式导数的最大规范。作为归一化的问题,他们考虑了所有零点都位于给定的凸紧凑子集 $K\Subset {\mathbb C}$ 的度 $n$ 多项式族 $\mathcal{P}_n(K)$。当 Tur\'an 在区间 $I:=[-1,1]$ 和圆盘 $D:=\{ z\in {\mathbb C}~:~|z|\le 1\}$ 得到第一个结果时,Er\H{o}d 也把研究扩展到了其他紧凑凸域。发现最优常数的阶数对于 $I$ 是 $\sqrt{n}$ ,对于 $D$ 是 $n$。直到 2006 年,我们才明确了所有紧凑凸域(内部非空)都遵循圆盘的模式,并包含阶数为 $n$ 的不等式。对于任意$1\le q <\infty$ 的$L^q(\partial K)$规范,我们得到了各类域的阶$n$结果。此外,在所有凸紧凑域的一般情况下,我们可以证明最优常数的$c n/\log n$下限和$O(n)$上限。此外,我们还猜想,所有紧凑凸域都包含一个阶 $n$ Tur\'an 型不等式。在此,我们针对所有 \emph{polygonal} 凸域和任意 $0< q <\infty$ 证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Turán type oscillation inequalities in $L^q$ norm on the boundary of convex polygonal domains
In 1939 P\'al Tur\'an and J\'anos Er\H{o}d initiated the study of lower estimations of maximum norms of derivatives of polynomials, in terms of the maximum norms of the polynomials themselves, on convex domains of the complex plane. As a matter of normalization they considered the family $\mathcal{P}_n(K)$ of degree $n$ polynomials with all zeros lying in the given convex, compact subset $K\Subset {\mathbb C}$. While Tur\'an obtained the first results for the interval $I:=[-1,1]$ and the disk $D:=\{ z\in {\mathbb C}~:~ |z|\le 1\}$, Er\H{o}d extended investigations to other compact convex domains, too. The order of the optimal constant was found to be $\sqrt{n}$ for $I$ and $n$ for $D$. It took until 2006 to clarify that all compact convex \emph{domains} (with nonempty interior), follow the pattern of the disk, and admit an order $n$ inequality. For $L^q(\partial K)$ norms with any $1\le q <\infty$ we obtained order $n$ results for various classes of domains. Further, in the generality of all convex, compact domains we could show a $c n/\log n$ lower bound together with an $O(n)$ upper bound for the optimal constant. Also, we conjectured that all compact convex domains admit an order $n$ Tur\'an type inequality. Here we prove this for all \emph{polygonal} convex domains and any $0< q <\infty$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信