{"title":"关于紧凑黎曼曲面上有单点极点的微函数的说明","authors":"V V Hemasundar Gollakota","doi":"arxiv-2407.18286","DOIUrl":null,"url":null,"abstract":"On a compact Riemann surface $X$ of genus $g$, one of the questions is the\nexistence of meromorphic functions having poles at a point $P$ on $X$. One of\nthe theorems is the Weierstrass gap theorem that determines a sequence of $g$\nnumbers $1 < n_k < 2g$, $1 \\leq k \\leq g$ for which a meromorphic function with\nthe order with $n_k$ fails to exist at $P$. In this note, we give proof of the\nWeierstrass gap theorem in cohomology terminology. We see that an interesting\ncombinatorial problem may be formed as a byproduct from the statement of the\nWeierstrass gap theorem.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A note on meromorphic functions on a compact Riemann surface having poles at a single point\",\"authors\":\"V V Hemasundar Gollakota\",\"doi\":\"arxiv-2407.18286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On a compact Riemann surface $X$ of genus $g$, one of the questions is the\\nexistence of meromorphic functions having poles at a point $P$ on $X$. One of\\nthe theorems is the Weierstrass gap theorem that determines a sequence of $g$\\nnumbers $1 < n_k < 2g$, $1 \\\\leq k \\\\leq g$ for which a meromorphic function with\\nthe order with $n_k$ fails to exist at $P$. In this note, we give proof of the\\nWeierstrass gap theorem in cohomology terminology. We see that an interesting\\ncombinatorial problem may be formed as a byproduct from the statement of the\\nWeierstrass gap theorem.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在属$g$的紧凑黎曼曲面$X$上,其中一个问题是在$X$上的点$P$上存在有极点的分形函数。其中一个定理是魏尔斯特拉斯间隙定理(Weierstrass gap theorem),该定理确定了一个$g$数序列:$1 < n_k < 2g$,$1 \leq k \leq g$,对于该序列,在$P$处不存在阶数为$n_k$的分垂函数。在本注中,我们用同调术语证明了韦尔斯特拉斯缺口定理。我们发现,从韦尔斯特拉斯间隙定理的陈述中可以得到一个有趣的组合问题作为副产品。
A note on meromorphic functions on a compact Riemann surface having poles at a single point
On a compact Riemann surface $X$ of genus $g$, one of the questions is the
existence of meromorphic functions having poles at a point $P$ on $X$. One of
the theorems is the Weierstrass gap theorem that determines a sequence of $g$
numbers $1 < n_k < 2g$, $1 \leq k \leq g$ for which a meromorphic function with
the order with $n_k$ fails to exist at $P$. In this note, we give proof of the
Weierstrass gap theorem in cohomology terminology. We see that an interesting
combinatorial problem may be formed as a byproduct from the statement of the
Weierstrass gap theorem.