{"title":"论具有准共形扩展的单值函数的积分手段谱","authors":"Jianjun Jin","doi":"arxiv-2407.19240","DOIUrl":null,"url":null,"abstract":"In this note we show that the integral means spectrum of any univalent\nfunction admitting a quasiconformal extension to the extended complex plane is\nstrictly less than the universal integral means spectrum. This gives an\naffirmative answer to a question raised in our recent paper.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"59 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the integral means spectrum of univalent functions with quasconformal extensions\",\"authors\":\"Jianjun Jin\",\"doi\":\"arxiv-2407.19240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note we show that the integral means spectrum of any univalent\\nfunction admitting a quasiconformal extension to the extended complex plane is\\nstrictly less than the universal integral means spectrum. This gives an\\naffirmative answer to a question raised in our recent paper.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.19240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the integral means spectrum of univalent functions with quasconformal extensions
In this note we show that the integral means spectrum of any univalent
function admitting a quasiconformal extension to the extended complex plane is
strictly less than the universal integral means spectrum. This gives an
affirmative answer to a question raised in our recent paper.