{"title":"伯格曼核在凸域上的凸性","authors":"Yuanpu Xiong","doi":"arxiv-2407.19254","DOIUrl":null,"url":null,"abstract":"Let $\\Omega$ be a convex domain in $\\mathbb{C}^n$ and $\\varphi$ a convex\nfunction on $\\Omega$. We prove that $\\log{K_{\\Omega,\\varphi}(z)}$ is a convex\nfunction (might be identically $-\\infty$) on $\\Omega$, where\n$K_{\\Omega,\\varphi}$ is the weighted Bergman kernel.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convexity of the Bergman Kernels on Convex Domains\",\"authors\":\"Yuanpu Xiong\",\"doi\":\"arxiv-2407.19254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\Omega$ be a convex domain in $\\\\mathbb{C}^n$ and $\\\\varphi$ a convex\\nfunction on $\\\\Omega$. We prove that $\\\\log{K_{\\\\Omega,\\\\varphi}(z)}$ is a convex\\nfunction (might be identically $-\\\\infty$) on $\\\\Omega$, where\\n$K_{\\\\Omega,\\\\varphi}$ is the weighted Bergman kernel.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.19254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Convexity of the Bergman Kernels on Convex Domains
Let $\Omega$ be a convex domain in $\mathbb{C}^n$ and $\varphi$ a convex
function on $\Omega$. We prove that $\log{K_{\Omega,\varphi}(z)}$ is a convex
function (might be identically $-\infty$) on $\Omega$, where
$K_{\Omega,\varphi}$ is the weighted Bergman kernel.