对布拉什克乘积子级集面积的精确估算

David Kalaj
{"title":"对布拉什克乘积子级集面积的精确估算","authors":"David Kalaj","doi":"arxiv-2407.19539","DOIUrl":null,"url":null,"abstract":"Let $\\mathbb{D}$ be the unit disk in the complex plane. Among other results,\nwe prove the following curious result for a finite Blaschke product: $$B(z)=e\n^{is}\\prod_{k=1}^d \\frac{z-a_k}{1-z \\overline{a_k}}.$$ The Lebesgue measure of\nthe sublevel set of $B$ satisfies the following sharp inequality for $t \\in\n[0,1]$: $$|\\{z\\in \\mathbb{D}:|B(z)|<t\\}|\\le \\pi t^{2/d},$$ with equality at a\nsingle point $t\\in(0,1)$ if and only if $a_k=0$ for every $k$. In that case the\nequality is attained for every $t$.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A sharp estimate of area for sublevel-set of Blaschke products\",\"authors\":\"David Kalaj\",\"doi\":\"arxiv-2407.19539\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathbb{D}$ be the unit disk in the complex plane. Among other results,\\nwe prove the following curious result for a finite Blaschke product: $$B(z)=e\\n^{is}\\\\prod_{k=1}^d \\\\frac{z-a_k}{1-z \\\\overline{a_k}}.$$ The Lebesgue measure of\\nthe sublevel set of $B$ satisfies the following sharp inequality for $t \\\\in\\n[0,1]$: $$|\\\\{z\\\\in \\\\mathbb{D}:|B(z)|<t\\\\}|\\\\le \\\\pi t^{2/d},$$ with equality at a\\nsingle point $t\\\\in(0,1)$ if and only if $a_k=0$ for every $k$. In that case the\\nequality is attained for every $t$.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.19539\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $\mathbb{D}$ 是复平面上的单位盘。在其他结果中,我们证明了有限布拉斯克乘积的如下奇特结果: $$B(z)=e^{is}\prod_{k=1}^d \frac{z-a_k}{1-z \overline{a_k}}。$$B 的子级集的 Lebesgue 度量在 $t \in[0,1]$ 时满足以下尖锐不等式:$$||{z\in \mathbb{D}:|B(z)|本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
A sharp estimate of area for sublevel-set of Blaschke products
Let $\mathbb{D}$ be the unit disk in the complex plane. Among other results, we prove the following curious result for a finite Blaschke product: $$B(z)=e ^{is}\prod_{k=1}^d \frac{z-a_k}{1-z \overline{a_k}}.$$ The Lebesgue measure of the sublevel set of $B$ satisfies the following sharp inequality for $t \in [0,1]$: $$|\{z\in \mathbb{D}:|B(z)|
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信