{"title":"论将 H-holomorphic 函数分解为四元数幂级数","authors":"Michael Parfenov","doi":"arxiv-2407.21474","DOIUrl":null,"url":null,"abstract":"Based on the full similarity in algebraic properties and differentiation\nrules between quaternionic (H-) holomorphic and complex (C-) holomorphic\nfunctions, we assume that there exists one holistic notion of a holomorphic\nfunction that has a H-representation in the case of quaternions and a\nC-representation in the case of complex variables. We get the essential\ndefinitions and criteria for a quaternionic power series convergence, adapting\ncomplex analogues to the quaternion case. It is established that the power\nseries expansions of any holomorphic function in C- and H-representations are\nsimilar and converge with identical convergence radiuses. We define a\nH-analytic function and prove that every H-holomorphic function is H-analytic.\nSome examples of power series expansions are given.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Decompositions of H-holomorphic functions into quaternionic power series\",\"authors\":\"Michael Parfenov\",\"doi\":\"arxiv-2407.21474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the full similarity in algebraic properties and differentiation\\nrules between quaternionic (H-) holomorphic and complex (C-) holomorphic\\nfunctions, we assume that there exists one holistic notion of a holomorphic\\nfunction that has a H-representation in the case of quaternions and a\\nC-representation in the case of complex variables. We get the essential\\ndefinitions and criteria for a quaternionic power series convergence, adapting\\ncomplex analogues to the quaternion case. It is established that the power\\nseries expansions of any holomorphic function in C- and H-representations are\\nsimilar and converge with identical convergence radiuses. We define a\\nH-analytic function and prove that every H-holomorphic function is H-analytic.\\nSome examples of power series expansions are given.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
基于四元(H-)全态函数和复元(C-)全态函数在代数性质和微分规则上的完全相似性,我们假定存在一个全态函数的整体概念,它在四元情况下有 H 表示,在复变情况下有 C 表示。我们得到了四元幂级数收敛的基本定义和标准,并将复变类比于四元的情况。我们确定,任何全形函数在 C- 表示和 H- 表示中的幂级数展开都是相似的,并以相同的收敛半径收敛。我们定义了 H- 解析函数,并证明了每个 H-holomorphic 函数都是 H- 解析函数。
On Decompositions of H-holomorphic functions into quaternionic power series
Based on the full similarity in algebraic properties and differentiation
rules between quaternionic (H-) holomorphic and complex (C-) holomorphic
functions, we assume that there exists one holistic notion of a holomorphic
function that has a H-representation in the case of quaternions and a
C-representation in the case of complex variables. We get the essential
definitions and criteria for a quaternionic power series convergence, adapting
complex analogues to the quaternion case. It is established that the power
series expansions of any holomorphic function in C- and H-representations are
similar and converge with identical convergence radiuses. We define a
H-analytic function and prove that every H-holomorphic function is H-analytic.
Some examples of power series expansions are given.