从极小集合观察热方程的可观察性

A. Walton Green, Kévin Le Balc'h, Jérémy Martin, Marcu-Antone Orsoni
{"title":"从极小集合观察热方程的可观察性","authors":"A. Walton Green, Kévin Le Balc'h, Jérémy Martin, Marcu-Antone Orsoni","doi":"arxiv-2407.20954","DOIUrl":null,"url":null,"abstract":"We consider the heat equation set on a bounded $C^1$ domain of $\\mathbb R^n$\nwith Dirichlet boundary conditions. The first purpose of this paper is to prove\nthat the heat equation is observable from any measurable set $\\omega$ with\npositive $(n-1+\\delta)$-Hausdorff content, for $\\delta >0$ arbitrary small. The\nproof relies on a new spectral estimate for linear combinations of Laplace\neigenfunctions, obtained via a Remez type inequality, and the use of the\nso-called Lebeau-Robbiano's method. Even if this observability result is sharp\nwith respect to the scale of Hausdorff dimension, our second goal is to\nconstruct families of sets $\\omega$ which have codimension greater than or\nequal to $1$ for which the heat equation remains observable.","PeriodicalId":501142,"journal":{"name":"arXiv - MATH - Complex Variables","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observability of the heat equation from very small sets\",\"authors\":\"A. Walton Green, Kévin Le Balc'h, Jérémy Martin, Marcu-Antone Orsoni\",\"doi\":\"arxiv-2407.20954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the heat equation set on a bounded $C^1$ domain of $\\\\mathbb R^n$\\nwith Dirichlet boundary conditions. The first purpose of this paper is to prove\\nthat the heat equation is observable from any measurable set $\\\\omega$ with\\npositive $(n-1+\\\\delta)$-Hausdorff content, for $\\\\delta >0$ arbitrary small. The\\nproof relies on a new spectral estimate for linear combinations of Laplace\\neigenfunctions, obtained via a Remez type inequality, and the use of the\\nso-called Lebeau-Robbiano's method. Even if this observability result is sharp\\nwith respect to the scale of Hausdorff dimension, our second goal is to\\nconstruct families of sets $\\\\omega$ which have codimension greater than or\\nequal to $1$ for which the heat equation remains observable.\",\"PeriodicalId\":501142,\"journal\":{\"name\":\"arXiv - MATH - Complex Variables\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Complex Variables\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Complex Variables","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是热方程组在具有迪里希特边界条件的$\mathbb R^n$有界$C^1$域上的问题。本文的第一个目的是证明在任意小的 $\delta >0$ 条件下,热方程是可以从任何具有正 $(n-1+\delta)$-Hausdorff 内容的可测集合 $\omega$ 中观测到的。这一证明依赖于对拉普拉斯特征函数线性组合的一种新的谱估计,它是通过雷麦兹式不等式和所谓的勒博-罗比阿诺方法得到的。即使这个可观测性结果在豪斯多夫维度的尺度上是尖锐的,我们的第二个目标也是要构造出$\omega$集合的族,这些集合的codimension大于或等于$1$,对于这些集合,热方程仍然是可观测的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Observability of the heat equation from very small sets
We consider the heat equation set on a bounded $C^1$ domain of $\mathbb R^n$ with Dirichlet boundary conditions. The first purpose of this paper is to prove that the heat equation is observable from any measurable set $\omega$ with positive $(n-1+\delta)$-Hausdorff content, for $\delta >0$ arbitrary small. The proof relies on a new spectral estimate for linear combinations of Laplace eigenfunctions, obtained via a Remez type inequality, and the use of the so-called Lebeau-Robbiano's method. Even if this observability result is sharp with respect to the scale of Hausdorff dimension, our second goal is to construct families of sets $\omega$ which have codimension greater than or equal to $1$ for which the heat equation remains observable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信