Vahid Borji, Rafael Martínez-Planell, María Trigueros
{"title":"学生对黎曼和与双重积分的理解:APOS 理论中的任务设计案例","authors":"Vahid Borji, Rafael Martínez-Planell, María Trigueros","doi":"10.1007/s40753-024-00250-6","DOIUrl":null,"url":null,"abstract":"<p>In this study, we investigate students’ understanding of the relation between a double integral of a continuous function over a rectangle and the corresponding Riemann sums. To do so, we explore the relation between (1) a proposed model (genetic decomposition) of mental constructions that students may do to understand the relation between Riemann sums and double integrals, (2) tasks designed to help students make these constructions, and (3) the results of semi-structured interviews with eleven students who completed the tasks. We focus on the construction differences between students who engaged in tasks designed according to the genetic decomposition and those in a previously studied lecture-based course. The study aimed to underscore the task's effect on students' learning in order to refine the genetic decomposition if needed. This study contributes a set of tasks that enable students to relate Riemann sums and double integrals. The results showed that students using the proposed materials in class and a collaborative didactical strategy provided evidence of constructing the structures proposed in the genetic decomposition. The tasks are based on a genetic decomposition, so the study also contributes by showing that it is an effective model to guide instruction. The constructions inferred from students’ work are discussed in detail and compared to those proposed in the genetic decomposition and those resulting from previous research.</p>","PeriodicalId":42532,"journal":{"name":"International Journal of Research in Undergraduate Mathematics Education","volume":"25 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Students’ Understanding of Riemann Sums and Double Integrals: The Case of Task Design in APOS Theory\",\"authors\":\"Vahid Borji, Rafael Martínez-Planell, María Trigueros\",\"doi\":\"10.1007/s40753-024-00250-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, we investigate students’ understanding of the relation between a double integral of a continuous function over a rectangle and the corresponding Riemann sums. To do so, we explore the relation between (1) a proposed model (genetic decomposition) of mental constructions that students may do to understand the relation between Riemann sums and double integrals, (2) tasks designed to help students make these constructions, and (3) the results of semi-structured interviews with eleven students who completed the tasks. We focus on the construction differences between students who engaged in tasks designed according to the genetic decomposition and those in a previously studied lecture-based course. The study aimed to underscore the task's effect on students' learning in order to refine the genetic decomposition if needed. This study contributes a set of tasks that enable students to relate Riemann sums and double integrals. The results showed that students using the proposed materials in class and a collaborative didactical strategy provided evidence of constructing the structures proposed in the genetic decomposition. The tasks are based on a genetic decomposition, so the study also contributes by showing that it is an effective model to guide instruction. The constructions inferred from students’ work are discussed in detail and compared to those proposed in the genetic decomposition and those resulting from previous research.</p>\",\"PeriodicalId\":42532,\"journal\":{\"name\":\"International Journal of Research in Undergraduate Mathematics Education\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Research in Undergraduate Mathematics Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40753-024-00250-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Research in Undergraduate Mathematics Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40753-024-00250-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Students’ Understanding of Riemann Sums and Double Integrals: The Case of Task Design in APOS Theory
In this study, we investigate students’ understanding of the relation between a double integral of a continuous function over a rectangle and the corresponding Riemann sums. To do so, we explore the relation between (1) a proposed model (genetic decomposition) of mental constructions that students may do to understand the relation between Riemann sums and double integrals, (2) tasks designed to help students make these constructions, and (3) the results of semi-structured interviews with eleven students who completed the tasks. We focus on the construction differences between students who engaged in tasks designed according to the genetic decomposition and those in a previously studied lecture-based course. The study aimed to underscore the task's effect on students' learning in order to refine the genetic decomposition if needed. This study contributes a set of tasks that enable students to relate Riemann sums and double integrals. The results showed that students using the proposed materials in class and a collaborative didactical strategy provided evidence of constructing the structures proposed in the genetic decomposition. The tasks are based on a genetic decomposition, so the study also contributes by showing that it is an effective model to guide instruction. The constructions inferred from students’ work are discussed in detail and compared to those proposed in the genetic decomposition and those resulting from previous research.
期刊介绍:
The International Journal of Research in Undergraduate Mathematics Education is dedicated to the interests of post secondary mathematics learning and teaching. It welcomes original research, including empirical, theoretical, and methodological reports of learning and teaching of undergraduate and graduate students.The journal contains insights on mathematics education from introductory courses such as calculus to higher level courses such as linear algebra, all the way through advanced courses in analysis and abstract algebra. It is also a venue for research that focuses on graduate level mathematics teaching and learning as well as research that examines how mathematicians go about their professional practice. In addition, the journal is an outlet for the publication of mathematics education research conducted in other tertiary settings, such as technical and community colleges. It provides the intellectual foundation for improving university mathematics teaching and learning and it will address specific problems in the secondary-tertiary transition. The journal contains original research reports in post-secondary mathematics. Empirical reports must be theoretically and methodologically rigorous. Manuscripts describing theoretical and methodological advances are also welcome.