设计用于机器人手臂跟踪的自适应 T-S 模糊滑模控制器

IF 3.6 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Zhi-Xiang Yang, Mei-Yung Chen
{"title":"设计用于机器人手臂跟踪的自适应 T-S 模糊滑模控制器","authors":"Zhi-Xiang Yang, Mei-Yung Chen","doi":"10.1007/s40815-024-01792-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we propose a novel adaptive T–S fuzzy sliding mode controller (ATSFSMC) and apply it to robot arm trajectory tracking. Since the robot arm belongs to a highly nonlinear system model, we use T–S fuzzy sliding mode control (TSFSMC) as the main controller, and consider the problems encountered in the actual solution of Linear matrix inequalities (LMI), then propose a split system matrix method to effectively solve the problem. In order to ensure that the controller has the best control parameters, we propose a new Lyapunov function design method, so that the state gain parameters in TSFSMC can be adjusted to the best value by the adaptive law, and the controller can handle the unknown disturbances and uncertainties of the system. Finally, we prove the stability of the system and demonstrate the excellent performance of the controller through simulation and experimental results.</p>","PeriodicalId":14056,"journal":{"name":"International Journal of Fuzzy Systems","volume":"46 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of an Adaptive T–S Fuzzy Sliding Mode Controller for Robot Arm Tracking\",\"authors\":\"Zhi-Xiang Yang, Mei-Yung Chen\",\"doi\":\"10.1007/s40815-024-01792-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we propose a novel adaptive T–S fuzzy sliding mode controller (ATSFSMC) and apply it to robot arm trajectory tracking. Since the robot arm belongs to a highly nonlinear system model, we use T–S fuzzy sliding mode control (TSFSMC) as the main controller, and consider the problems encountered in the actual solution of Linear matrix inequalities (LMI), then propose a split system matrix method to effectively solve the problem. In order to ensure that the controller has the best control parameters, we propose a new Lyapunov function design method, so that the state gain parameters in TSFSMC can be adjusted to the best value by the adaptive law, and the controller can handle the unknown disturbances and uncertainties of the system. Finally, we prove the stability of the system and demonstrate the excellent performance of the controller through simulation and experimental results.</p>\",\"PeriodicalId\":14056,\"journal\":{\"name\":\"International Journal of Fuzzy Systems\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fuzzy Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s40815-024-01792-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fuzzy Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40815-024-01792-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新型自适应 T-S 模糊滑模控制器(ATSFSMC),并将其应用于机械臂轨迹跟踪。由于机械臂属于高度非线性系统模型,因此我们采用 T-S 模糊滑模控制(TSFSMC)作为主控制器,并考虑了线性矩阵不等式(LMI)实际求解过程中遇到的问题,然后提出了一种分裂系统矩阵方法来有效解决该问题。为了确保控制器具有最佳的控制参数,我们提出了一种新的 Lyapunov 函数设计方法,这样 TSFSMC 中的状态增益参数就能通过自适应律调整到最佳值,控制器就能处理系统的未知扰动和不确定性。最后,我们通过仿真和实验结果证明了系统的稳定性,并展示了控制器的卓越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Design of an Adaptive T–S Fuzzy Sliding Mode Controller for Robot Arm Tracking

Design of an Adaptive T–S Fuzzy Sliding Mode Controller for Robot Arm Tracking

In this paper, we propose a novel adaptive T–S fuzzy sliding mode controller (ATSFSMC) and apply it to robot arm trajectory tracking. Since the robot arm belongs to a highly nonlinear system model, we use T–S fuzzy sliding mode control (TSFSMC) as the main controller, and consider the problems encountered in the actual solution of Linear matrix inequalities (LMI), then propose a split system matrix method to effectively solve the problem. In order to ensure that the controller has the best control parameters, we propose a new Lyapunov function design method, so that the state gain parameters in TSFSMC can be adjusted to the best value by the adaptive law, and the controller can handle the unknown disturbances and uncertainties of the system. Finally, we prove the stability of the system and demonstrate the excellent performance of the controller through simulation and experimental results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Fuzzy Systems
International Journal of Fuzzy Systems 工程技术-计算机:人工智能
CiteScore
7.80
自引率
9.30%
发文量
188
审稿时长
16 months
期刊介绍: The International Journal of Fuzzy Systems (IJFS) is an official journal of Taiwan Fuzzy Systems Association (TFSA) and is published semi-quarterly. IJFS will consider high quality papers that deal with the theory, design, and application of fuzzy systems, soft computing systems, grey systems, and extension theory systems ranging from hardware to software. Survey and expository submissions are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信