抽样平均逼近中的多级蒙特卡罗:收敛性、复杂性与应用

Devang Sinha, Siddhartha P. Chakrabarty
{"title":"抽样平均逼近中的多级蒙特卡罗:收敛性、复杂性与应用","authors":"Devang Sinha, Siddhartha P. Chakrabarty","doi":"arxiv-2407.18504","DOIUrl":null,"url":null,"abstract":"In this paper, we examine the Sample Average Approximation (SAA) procedure\nwithin a framework where the Monte Carlo estimator of the expectation is\nbiased. We also introduce Multilevel Monte Carlo (MLMC) in the SAA setup to\nenhance the computational efficiency of solving optimization problems. In this\ncontext, we conduct a thorough analysis, exploiting Cram\\'er's large deviation\ntheory, to establish uniform convergence, quantify the convergence rate, and\ndetermine the sample complexity for both standard Monte Carlo and MLMC\nparadigms. Additionally, we perform a root-mean-squared error analysis\nutilizing tools from empirical process theory to derive sample complexity\nwithout relying on the finite moment condition typically required for uniform\nconvergence results. Finally, we validate our findings and demonstrate the\nadvantages of the MLMC estimator through numerical examples, estimating\nConditional Value-at-Risk (CVaR) in the Geometric Brownian Motion and nested\nexpectation framework.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilevel Monte Carlo in Sample Average Approximation: Convergence, Complexity and Application\",\"authors\":\"Devang Sinha, Siddhartha P. Chakrabarty\",\"doi\":\"arxiv-2407.18504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we examine the Sample Average Approximation (SAA) procedure\\nwithin a framework where the Monte Carlo estimator of the expectation is\\nbiased. We also introduce Multilevel Monte Carlo (MLMC) in the SAA setup to\\nenhance the computational efficiency of solving optimization problems. In this\\ncontext, we conduct a thorough analysis, exploiting Cram\\\\'er's large deviation\\ntheory, to establish uniform convergence, quantify the convergence rate, and\\ndetermine the sample complexity for both standard Monte Carlo and MLMC\\nparadigms. Additionally, we perform a root-mean-squared error analysis\\nutilizing tools from empirical process theory to derive sample complexity\\nwithout relying on the finite moment condition typically required for uniform\\nconvergence results. Finally, we validate our findings and demonstrate the\\nadvantages of the MLMC estimator through numerical examples, estimating\\nConditional Value-at-Risk (CVaR) in the Geometric Brownian Motion and nested\\nexpectation framework.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们在蒙特卡罗期望估计器有偏差的框架下研究了样本平均逼近(SAA)程序。我们还在 SAA 设置中引入了多级蒙特卡罗(MLMC),以提高解决优化问题的计算效率。在此背景下,我们利用克拉姆(Cram\'er)的大偏差理论(large deviationtheory)进行了深入分析,为标准蒙特卡罗和 MLMC 范式建立了均匀收敛性、量化了收敛速率并确定了样本复杂度。此外,我们还利用经验过程理论的工具进行了均方根误差分析,得出了样本复杂度,而无需依赖均匀收敛结果通常需要的有限矩条件。最后,我们通过数值示例验证了我们的发现,并证明了 MLMC 估计器的优势,即在几何布朗运动和嵌套期望框架下估计条件风险值(CVaR)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multilevel Monte Carlo in Sample Average Approximation: Convergence, Complexity and Application
In this paper, we examine the Sample Average Approximation (SAA) procedure within a framework where the Monte Carlo estimator of the expectation is biased. We also introduce Multilevel Monte Carlo (MLMC) in the SAA setup to enhance the computational efficiency of solving optimization problems. In this context, we conduct a thorough analysis, exploiting Cram\'er's large deviation theory, to establish uniform convergence, quantify the convergence rate, and determine the sample complexity for both standard Monte Carlo and MLMC paradigms. Additionally, we perform a root-mean-squared error analysis utilizing tools from empirical process theory to derive sample complexity without relying on the finite moment condition typically required for uniform convergence results. Finally, we validate our findings and demonstrate the advantages of the MLMC estimator through numerical examples, estimating Conditional Value-at-Risk (CVaR) in the Geometric Brownian Motion and nested expectation framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信