Dariush Zamani Dadaneh, Sajad Moradi, Behrooz Alizadeh
{"title":"家禽规划和鸡蛋库存管理的随机机会约束框架","authors":"Dariush Zamani Dadaneh, Sajad Moradi, Behrooz Alizadeh","doi":"10.1007/s12063-024-00507-y","DOIUrl":null,"url":null,"abstract":"<p>This study addresses the capacitated lot-sizing problem in the poultry industry for egg production planning, aiming to minimize production, transportation, and inventory costs. This problem has already been investigated with data certainty and formulated as a mathematical model and a heuristic algorithm has been applied to solve it due to high complexity. In this study, we reformulate the same problem as a new mixed integer linear programming model to achieve optimal solution in a relatively short time without the need for heuristic algorithms. To evaluate the model performance, it is executed using the available data, and its efficiency is validated by comparing the obtained results. Subsequently, the uncertainty of weekly demand is considered, leading to potential shortage or surplus in storage. To address this uncertainty, the chance-constraints method is employed with various attitudes, and several production plans are proposed accordingly. The performance of these plans is compared using random data, and the most suitable programs are identified. The presented decision-making tool can provide production planning that meets customer demand with high reliability while also minimizing surplus inventory in the warehouse.</p>","PeriodicalId":46120,"journal":{"name":"Operations Management Research","volume":null,"pages":null},"PeriodicalIF":6.9000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stochastic chance-constraint framework for poultry planning and egg inventory management\",\"authors\":\"Dariush Zamani Dadaneh, Sajad Moradi, Behrooz Alizadeh\",\"doi\":\"10.1007/s12063-024-00507-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study addresses the capacitated lot-sizing problem in the poultry industry for egg production planning, aiming to minimize production, transportation, and inventory costs. This problem has already been investigated with data certainty and formulated as a mathematical model and a heuristic algorithm has been applied to solve it due to high complexity. In this study, we reformulate the same problem as a new mixed integer linear programming model to achieve optimal solution in a relatively short time without the need for heuristic algorithms. To evaluate the model performance, it is executed using the available data, and its efficiency is validated by comparing the obtained results. Subsequently, the uncertainty of weekly demand is considered, leading to potential shortage or surplus in storage. To address this uncertainty, the chance-constraints method is employed with various attitudes, and several production plans are proposed accordingly. The performance of these plans is compared using random data, and the most suitable programs are identified. The presented decision-making tool can provide production planning that meets customer demand with high reliability while also minimizing surplus inventory in the warehouse.</p>\",\"PeriodicalId\":46120,\"journal\":{\"name\":\"Operations Management Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Operations Management Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1007/s12063-024-00507-y\",\"RegionNum\":2,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Management Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1007/s12063-024-00507-y","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MANAGEMENT","Score":null,"Total":0}
A stochastic chance-constraint framework for poultry planning and egg inventory management
This study addresses the capacitated lot-sizing problem in the poultry industry for egg production planning, aiming to minimize production, transportation, and inventory costs. This problem has already been investigated with data certainty and formulated as a mathematical model and a heuristic algorithm has been applied to solve it due to high complexity. In this study, we reformulate the same problem as a new mixed integer linear programming model to achieve optimal solution in a relatively short time without the need for heuristic algorithms. To evaluate the model performance, it is executed using the available data, and its efficiency is validated by comparing the obtained results. Subsequently, the uncertainty of weekly demand is considered, leading to potential shortage or surplus in storage. To address this uncertainty, the chance-constraints method is employed with various attitudes, and several production plans are proposed accordingly. The performance of these plans is compared using random data, and the most suitable programs are identified. The presented decision-making tool can provide production planning that meets customer demand with high reliability while also minimizing surplus inventory in the warehouse.
期刊介绍:
Operations Management Research is a peer-reviewed journal that focuses on rapidly publishing high-quality research in the field of operations management. It aims to advance both the theory and practice of operations management across a wide range of topics and research paradigms. The journal covers all aspects of operations management, including manufacturing, supply chain, health care, and service operations. It welcomes various research methodologies, such as case studies, action research, surveys, mathematical modeling, and simulation. The goal of Operations Management Research is to promote research that enhances both the theory and practice of operations management, as it is an applied discipline. The journal also publishes Academic Notes, which are special papers that address research methodologies, the direction of the operations management field, and other topics of interest to academicians. Additionally, there is a demand for shorter and more focused research articles in operations management, which this journal aims to fulfill.