V. M. Matyunin, A. Yu. Marchenkov, M. V. Goryachkina, A. Yu. Poroykov, D. A. Zhgut, M. A. Karimbekov, A. A. Pankina
{"title":"比例因子对通过试样拉伸强度确定的钢材杨氏模量的影响","authors":"V. M. Matyunin, A. Yu. Marchenkov, M. V. Goryachkina, A. Yu. Poroykov, D. A. Zhgut, M. A. Karimbekov, A. A. Pankina","doi":"10.1134/s0020168524700225","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The modulus of elasticity is considered a fairly stable physicomechanical characteristic of materials, which is little dependent on their composition and structure. Among the factors influencing the modulus of elasticity, temperature and anisotropy are distinguished. Information about the influence of scale factor on the modulus of elasticity is quite limited and sometimes contradictory. The aim of this study is to investigate the influence of the scale factor on the elastic modulus of steel 45 determined by tension geometrically similar specimens with different initial diameters. The specimens were tested on an Instron 8801 universal testing machine at a deformation rate of 0.1 mm/min at room temperature. Elastic deformations during tension were measured using two methods—with the help of a strain gauge and the digital image correlation method. Both methods showed fairly close results when testing specimens of the same diameter. However, the digital image correlation method allowed for measurements of elastic deformations on specimens with small diameters, where it was not possible to attach a strain gauge. A decrease in the modulus of elasticity with an increase in the initial diameter of the specimen was established. Graphical dependences of the modulus of elasticity on the diameter of the specimen and the area of its cross section were obtained. Possible reasons for the decrease in the modulus of elasticity under the influence of the scale factor are outlined. A decrease in specific surface area and specific surface energy, an increase in the deformable volume, and a decrease in the deformation rate at a constant deformation speed are among the main reasons. The decrease in the modulus of elasticity under the influence of the scale factor should be taken into account in strength calculations and when assessing the residual life of parts and structures with relatively large cross sections and wall thicknesses.</p>","PeriodicalId":585,"journal":{"name":"Inorganic Materials","volume":"24 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the Scale Factor on the Young’s Modulus of Steel Determined by the Tensile Strength of the Specimens\",\"authors\":\"V. M. Matyunin, A. Yu. Marchenkov, M. V. Goryachkina, A. Yu. Poroykov, D. A. Zhgut, M. A. Karimbekov, A. A. Pankina\",\"doi\":\"10.1134/s0020168524700225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The modulus of elasticity is considered a fairly stable physicomechanical characteristic of materials, which is little dependent on their composition and structure. Among the factors influencing the modulus of elasticity, temperature and anisotropy are distinguished. Information about the influence of scale factor on the modulus of elasticity is quite limited and sometimes contradictory. The aim of this study is to investigate the influence of the scale factor on the elastic modulus of steel 45 determined by tension geometrically similar specimens with different initial diameters. The specimens were tested on an Instron 8801 universal testing machine at a deformation rate of 0.1 mm/min at room temperature. Elastic deformations during tension were measured using two methods—with the help of a strain gauge and the digital image correlation method. Both methods showed fairly close results when testing specimens of the same diameter. However, the digital image correlation method allowed for measurements of elastic deformations on specimens with small diameters, where it was not possible to attach a strain gauge. A decrease in the modulus of elasticity with an increase in the initial diameter of the specimen was established. Graphical dependences of the modulus of elasticity on the diameter of the specimen and the area of its cross section were obtained. Possible reasons for the decrease in the modulus of elasticity under the influence of the scale factor are outlined. A decrease in specific surface area and specific surface energy, an increase in the deformable volume, and a decrease in the deformation rate at a constant deformation speed are among the main reasons. The decrease in the modulus of elasticity under the influence of the scale factor should be taken into account in strength calculations and when assessing the residual life of parts and structures with relatively large cross sections and wall thicknesses.</p>\",\"PeriodicalId\":585,\"journal\":{\"name\":\"Inorganic Materials\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1134/s0020168524700225\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1134/s0020168524700225","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Influence of the Scale Factor on the Young’s Modulus of Steel Determined by the Tensile Strength of the Specimens
Abstract
The modulus of elasticity is considered a fairly stable physicomechanical characteristic of materials, which is little dependent on their composition and structure. Among the factors influencing the modulus of elasticity, temperature and anisotropy are distinguished. Information about the influence of scale factor on the modulus of elasticity is quite limited and sometimes contradictory. The aim of this study is to investigate the influence of the scale factor on the elastic modulus of steel 45 determined by tension geometrically similar specimens with different initial diameters. The specimens were tested on an Instron 8801 universal testing machine at a deformation rate of 0.1 mm/min at room temperature. Elastic deformations during tension were measured using two methods—with the help of a strain gauge and the digital image correlation method. Both methods showed fairly close results when testing specimens of the same diameter. However, the digital image correlation method allowed for measurements of elastic deformations on specimens with small diameters, where it was not possible to attach a strain gauge. A decrease in the modulus of elasticity with an increase in the initial diameter of the specimen was established. Graphical dependences of the modulus of elasticity on the diameter of the specimen and the area of its cross section were obtained. Possible reasons for the decrease in the modulus of elasticity under the influence of the scale factor are outlined. A decrease in specific surface area and specific surface energy, an increase in the deformable volume, and a decrease in the deformation rate at a constant deformation speed are among the main reasons. The decrease in the modulus of elasticity under the influence of the scale factor should be taken into account in strength calculations and when assessing the residual life of parts and structures with relatively large cross sections and wall thicknesses.
期刊介绍:
Inorganic Materials is a journal that publishes reviews and original articles devoted to chemistry, physics, and applications of various inorganic materials including high-purity substances and materials. The journal discusses phase equilibria, including P–T–X diagrams, and the fundamentals of inorganic materials science, which determines preparatory conditions for compounds of various compositions with specified deviations from stoichiometry. Inorganic Materials is a multidisciplinary journal covering all classes of inorganic materials. The journal welcomes manuscripts from all countries in the English or Russian language.