P Hepach, L Bresinsky, M Sauter, Y Livshitz, I Engelhardt
{"title":"地中海气候下岩溶含水层地下水补给量计算方法比较","authors":"P Hepach, L Bresinsky, M Sauter, Y Livshitz, I Engelhardt","doi":"10.1007/s10040-024-02809-8","DOIUrl":null,"url":null,"abstract":"<p>Karst aquifers can be particularly vulnerable to human activities and climate change due to their relatively high degree of connection with the surface. This study utilized an ensemble of event-based recharge calculation methods to address the problem of structural uncertainty for the example of the Western Mountain Aquifer (WMA), a Mediterranean karst aquifer located in Israel and the West Bank. Spatially distributed recharge estimates derived from the Soil and Water Assessment Tool (SWAT) and the process-based infiltration model (PIM) were compared to site-specific, empirical regression models. The SWAT and PIM mean annual recharge estimates ranged from 32–34.6% of precipitation, almost equating to the results of empirical regression models (32–36%). Future recharge predictions under the influence of climate change were quantified by parameterizing the SWAT and PIM methods with a downscaled regional climate model of Israel. SWAT predicts a 23% decrease in recharge by 2051–2070 relative to 1981–2001. In contrast, PIM shows a 9% decrease, possibly due to the representation of infiltration through preferential flow pathways and exclusion of surface runoff processes. These divergent projections underline key methodological differences in the representation of hydrological processes. Nevertheless, both methods effectively provided good estimates of groundwater recharge. The recharge rates estimated from the various methods were integrated into MODFLOW to assess their relative impacts on groundwater storage dynamics. The ensemble of MODFLOW projected groundwater storage outputs can provide guidance for sustainable groundwater management in the region.</p>","PeriodicalId":13013,"journal":{"name":"Hydrogeology Journal","volume":"22 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of methods to calculate groundwater recharge for karst aquifers under a Mediterranean climate\",\"authors\":\"P Hepach, L Bresinsky, M Sauter, Y Livshitz, I Engelhardt\",\"doi\":\"10.1007/s10040-024-02809-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Karst aquifers can be particularly vulnerable to human activities and climate change due to their relatively high degree of connection with the surface. This study utilized an ensemble of event-based recharge calculation methods to address the problem of structural uncertainty for the example of the Western Mountain Aquifer (WMA), a Mediterranean karst aquifer located in Israel and the West Bank. Spatially distributed recharge estimates derived from the Soil and Water Assessment Tool (SWAT) and the process-based infiltration model (PIM) were compared to site-specific, empirical regression models. The SWAT and PIM mean annual recharge estimates ranged from 32–34.6% of precipitation, almost equating to the results of empirical regression models (32–36%). Future recharge predictions under the influence of climate change were quantified by parameterizing the SWAT and PIM methods with a downscaled regional climate model of Israel. SWAT predicts a 23% decrease in recharge by 2051–2070 relative to 1981–2001. In contrast, PIM shows a 9% decrease, possibly due to the representation of infiltration through preferential flow pathways and exclusion of surface runoff processes. These divergent projections underline key methodological differences in the representation of hydrological processes. Nevertheless, both methods effectively provided good estimates of groundwater recharge. The recharge rates estimated from the various methods were integrated into MODFLOW to assess their relative impacts on groundwater storage dynamics. The ensemble of MODFLOW projected groundwater storage outputs can provide guidance for sustainable groundwater management in the region.</p>\",\"PeriodicalId\":13013,\"journal\":{\"name\":\"Hydrogeology Journal\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrogeology Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s10040-024-02809-8\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrogeology Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s10040-024-02809-8","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Comparison of methods to calculate groundwater recharge for karst aquifers under a Mediterranean climate
Karst aquifers can be particularly vulnerable to human activities and climate change due to their relatively high degree of connection with the surface. This study utilized an ensemble of event-based recharge calculation methods to address the problem of structural uncertainty for the example of the Western Mountain Aquifer (WMA), a Mediterranean karst aquifer located in Israel and the West Bank. Spatially distributed recharge estimates derived from the Soil and Water Assessment Tool (SWAT) and the process-based infiltration model (PIM) were compared to site-specific, empirical regression models. The SWAT and PIM mean annual recharge estimates ranged from 32–34.6% of precipitation, almost equating to the results of empirical regression models (32–36%). Future recharge predictions under the influence of climate change were quantified by parameterizing the SWAT and PIM methods with a downscaled regional climate model of Israel. SWAT predicts a 23% decrease in recharge by 2051–2070 relative to 1981–2001. In contrast, PIM shows a 9% decrease, possibly due to the representation of infiltration through preferential flow pathways and exclusion of surface runoff processes. These divergent projections underline key methodological differences in the representation of hydrological processes. Nevertheless, both methods effectively provided good estimates of groundwater recharge. The recharge rates estimated from the various methods were integrated into MODFLOW to assess their relative impacts on groundwater storage dynamics. The ensemble of MODFLOW projected groundwater storage outputs can provide guidance for sustainable groundwater management in the region.
期刊介绍:
Hydrogeology Journal was founded in 1992 to foster understanding of hydrogeology; to describe worldwide progress in hydrogeology; and to provide an accessible forum for scientists, researchers, engineers, and practitioners in developing and industrialized countries.
Since then, the journal has earned a large worldwide readership. Its peer-reviewed research articles integrate subsurface hydrology and geology with supporting disciplines: geochemistry, geophysics, geomorphology, geobiology, surface-water hydrology, tectonics, numerical modeling, economics, and sociology.