马特科夫斯基和韦索沃斯基问题的另一种视角,产生一类新的解决方案

IF 0.9 3区 数学 Q2 MATHEMATICS
Janusz Morawiec, Thomas Zürcher
{"title":"马特科夫斯基和韦索沃斯基问题的另一种视角,产生一类新的解决方案","authors":"Janusz Morawiec, Thomas Zürcher","doi":"10.1007/s00010-024-01110-z","DOIUrl":null,"url":null,"abstract":"<p>The following MW-problem was posed independently by Janusz Matkowski and Jacek Wesołowski in different forms in 1985 and 2009, respectively: Are there increasing and continuous functions <span>\\(\\varphi :[0,1]\\rightarrow [0,1]\\)</span>, distinct from the identity on [0, 1], such that <span>\\(\\varphi (0)=0\\)</span>, <span>\\(\\varphi (1)=1\\)</span> and <span>\\(\\varphi (x)=\\varphi (\\frac{x}{2})+\\varphi (\\frac{x+1}{2})-\\varphi (\\frac{1}{2})\\)</span> for every <span>\\(x\\in [0,1]\\)</span>? By now, it is known that each of the de Rham functions <span>\\(R_p\\)</span>, where <span>\\(p\\in (0,1)\\)</span>, is a solution of the MW-problem, and for any Borel probability measure <span>\\(\\mu \\)</span> concentrated on (0, 1) the formula <span>\\(\\phi _\\mu (x)=\\int _{(0,1)}R_p(x)\\, d\\mu (p)\\)</span> defines a solution <span>\\(\\phi _\\mu :[0,1]\\rightarrow [0,1]\\)</span> of this problem as well. In this paper, we give a new family of solutions of the MW-problem consisting of Cantor-type functions. We also prove that there are strictly increasing solutions of the MW-problem that are not of the above integral form with any Borel probability measure <span>\\(\\mu \\)</span>.</p>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Another look at the Matkowski and Wesołowski problem yielding a new class of solutions\",\"authors\":\"Janusz Morawiec, Thomas Zürcher\",\"doi\":\"10.1007/s00010-024-01110-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The following MW-problem was posed independently by Janusz Matkowski and Jacek Wesołowski in different forms in 1985 and 2009, respectively: Are there increasing and continuous functions <span>\\\\(\\\\varphi :[0,1]\\\\rightarrow [0,1]\\\\)</span>, distinct from the identity on [0, 1], such that <span>\\\\(\\\\varphi (0)=0\\\\)</span>, <span>\\\\(\\\\varphi (1)=1\\\\)</span> and <span>\\\\(\\\\varphi (x)=\\\\varphi (\\\\frac{x}{2})+\\\\varphi (\\\\frac{x+1}{2})-\\\\varphi (\\\\frac{1}{2})\\\\)</span> for every <span>\\\\(x\\\\in [0,1]\\\\)</span>? By now, it is known that each of the de Rham functions <span>\\\\(R_p\\\\)</span>, where <span>\\\\(p\\\\in (0,1)\\\\)</span>, is a solution of the MW-problem, and for any Borel probability measure <span>\\\\(\\\\mu \\\\)</span> concentrated on (0, 1) the formula <span>\\\\(\\\\phi _\\\\mu (x)=\\\\int _{(0,1)}R_p(x)\\\\, d\\\\mu (p)\\\\)</span> defines a solution <span>\\\\(\\\\phi _\\\\mu :[0,1]\\\\rightarrow [0,1]\\\\)</span> of this problem as well. In this paper, we give a new family of solutions of the MW-problem consisting of Cantor-type functions. We also prove that there are strictly increasing solutions of the MW-problem that are not of the above integral form with any Borel probability measure <span>\\\\(\\\\mu \\\\)</span>.</p>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00010-024-01110-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00010-024-01110-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

亚努什-马特科夫斯基(Janusz Matkowski)和雅切克-韦索沃斯基(Jacek Wesołowski)分别于1985年和2009年以不同形式独立提出了下面的MW问题:是否存在递增且连续的函数 \(\varphi :與[0, 1]上的同一性不同,這樣的\(\varphi (0)=0\)、\(\varphi(1)=1))和\(\varphi(x)=\varphi(\frac{x}{2})+\varphi(\frac{x+1}{2})-\varphi(\frac{1}{2})) for every \(x\in [0,1]\)?现在我们已经知道,每一个德拉姆函数(R_p\ ),其中 \(p\in (0,1)\),都是MW问题的一个解、对于任何集中在(0, 1)上的博尔概率度量来说,公式 ((\phi _\mu (x)=\int _{(0,1)}R_p(x)\, d\mu (p)\) 定义了一个解 (\phi _\mu :也定义了这个问题的解(phi _\mu : [0,1]\rightarrow [0,1])。在本文中,我们给出了由 Cantor 型函数组成的 MW 问题的新解族。我们还证明了存在严格递增的 MW 问题解,这些解不是上述积分形式,且具有任意伯尔概率度量 \(\mu \)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Another look at the Matkowski and Wesołowski problem yielding a new class of solutions

The following MW-problem was posed independently by Janusz Matkowski and Jacek Wesołowski in different forms in 1985 and 2009, respectively: Are there increasing and continuous functions \(\varphi :[0,1]\rightarrow [0,1]\), distinct from the identity on [0, 1], such that \(\varphi (0)=0\), \(\varphi (1)=1\) and \(\varphi (x)=\varphi (\frac{x}{2})+\varphi (\frac{x+1}{2})-\varphi (\frac{1}{2})\) for every \(x\in [0,1]\)? By now, it is known that each of the de Rham functions \(R_p\), where \(p\in (0,1)\), is a solution of the MW-problem, and for any Borel probability measure \(\mu \) concentrated on (0, 1) the formula \(\phi _\mu (x)=\int _{(0,1)}R_p(x)\, d\mu (p)\) defines a solution \(\phi _\mu :[0,1]\rightarrow [0,1]\) of this problem as well. In this paper, we give a new family of solutions of the MW-problem consisting of Cantor-type functions. We also prove that there are strictly increasing solutions of the MW-problem that are not of the above integral form with any Borel probability measure \(\mu \).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信