Bernhard-Johannes Jesse, Gert Jan Kramer, Vinzenz Koning
{"title":"确定能源系统复原力定义所需的要素特征","authors":"Bernhard-Johannes Jesse, Gert Jan Kramer, Vinzenz Koning","doi":"10.1186/s13705-024-00478-9","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>To reduce the effects of climate change, the current fossil-based energy system must transition to a low-carbon system based largely on renewables. In both academic literature and non-academic discourse concerning the energy transition, resilience is frequently mentioned as an additional objective or requirement. Despite its frequent use, resilience is a very malleable term with different meanings in different contexts.</p><h3>Main text</h3><p>This paper seeks to identify how resilience is understood in the field of the energy system and whether there are similar aspects in the different ways the term is understood. To this end, we review more than 130 papers for definitions of energy system resilience. In addition, we use different aspects to categorize and examine these. The results paint a diverse picture in terms of the definition and understanding of resilience in the energy system. However, a few definition archetypes can be identified. The first uses a straightforward approach, in which the energy system has one clearly defined equilibrium state. Here, resilience is defined in relation to the response of the energy system to a disturbance and its ability to quickly return to its equilibrium. The second type of resilience allows for different equilibriums, to which a resilient energy system can move after a disruption. Another type of resilience focuses more on the process and the actions of the system in response to disruption. Here, resilience is defined as the ability of the system to adapt and change. In the papers reviewed, we find that the operational definition of resilience often encompasses aspects of different archetypes. This diversity shows that resilience is a versatile concept with different elements.</p><h3>Conclusions</h3><p>With this paper, we aim to provide insight into how the understanding of resilience for the energy system differs depending on which aspect of the energy system is studied, and which elements might be necessary for different understandings of resilience. We conclude by providing information and recommendations on the potential usage of the term energy system resilience based on our lessons learned.</p></div>","PeriodicalId":539,"journal":{"name":"Energy, Sustainability and Society","volume":"14 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://energsustainsoc.biomedcentral.com/counter/pdf/10.1186/s13705-024-00478-9","citationCount":"0","resultStr":"{\"title\":\"Characterization of necessary elements for a definition of resilience for the energy system\",\"authors\":\"Bernhard-Johannes Jesse, Gert Jan Kramer, Vinzenz Koning\",\"doi\":\"10.1186/s13705-024-00478-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>To reduce the effects of climate change, the current fossil-based energy system must transition to a low-carbon system based largely on renewables. In both academic literature and non-academic discourse concerning the energy transition, resilience is frequently mentioned as an additional objective or requirement. Despite its frequent use, resilience is a very malleable term with different meanings in different contexts.</p><h3>Main text</h3><p>This paper seeks to identify how resilience is understood in the field of the energy system and whether there are similar aspects in the different ways the term is understood. To this end, we review more than 130 papers for definitions of energy system resilience. In addition, we use different aspects to categorize and examine these. The results paint a diverse picture in terms of the definition and understanding of resilience in the energy system. However, a few definition archetypes can be identified. The first uses a straightforward approach, in which the energy system has one clearly defined equilibrium state. Here, resilience is defined in relation to the response of the energy system to a disturbance and its ability to quickly return to its equilibrium. The second type of resilience allows for different equilibriums, to which a resilient energy system can move after a disruption. Another type of resilience focuses more on the process and the actions of the system in response to disruption. Here, resilience is defined as the ability of the system to adapt and change. In the papers reviewed, we find that the operational definition of resilience often encompasses aspects of different archetypes. This diversity shows that resilience is a versatile concept with different elements.</p><h3>Conclusions</h3><p>With this paper, we aim to provide insight into how the understanding of resilience for the energy system differs depending on which aspect of the energy system is studied, and which elements might be necessary for different understandings of resilience. We conclude by providing information and recommendations on the potential usage of the term energy system resilience based on our lessons learned.</p></div>\",\"PeriodicalId\":539,\"journal\":{\"name\":\"Energy, Sustainability and Society\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://energsustainsoc.biomedcentral.com/counter/pdf/10.1186/s13705-024-00478-9\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy, Sustainability and Society\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13705-024-00478-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy, Sustainability and Society","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1186/s13705-024-00478-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Characterization of necessary elements for a definition of resilience for the energy system
Background
To reduce the effects of climate change, the current fossil-based energy system must transition to a low-carbon system based largely on renewables. In both academic literature and non-academic discourse concerning the energy transition, resilience is frequently mentioned as an additional objective or requirement. Despite its frequent use, resilience is a very malleable term with different meanings in different contexts.
Main text
This paper seeks to identify how resilience is understood in the field of the energy system and whether there are similar aspects in the different ways the term is understood. To this end, we review more than 130 papers for definitions of energy system resilience. In addition, we use different aspects to categorize and examine these. The results paint a diverse picture in terms of the definition and understanding of resilience in the energy system. However, a few definition archetypes can be identified. The first uses a straightforward approach, in which the energy system has one clearly defined equilibrium state. Here, resilience is defined in relation to the response of the energy system to a disturbance and its ability to quickly return to its equilibrium. The second type of resilience allows for different equilibriums, to which a resilient energy system can move after a disruption. Another type of resilience focuses more on the process and the actions of the system in response to disruption. Here, resilience is defined as the ability of the system to adapt and change. In the papers reviewed, we find that the operational definition of resilience often encompasses aspects of different archetypes. This diversity shows that resilience is a versatile concept with different elements.
Conclusions
With this paper, we aim to provide insight into how the understanding of resilience for the energy system differs depending on which aspect of the energy system is studied, and which elements might be necessary for different understandings of resilience. We conclude by providing information and recommendations on the potential usage of the term energy system resilience based on our lessons learned.
期刊介绍:
Energy, Sustainability and Society is a peer-reviewed open access journal published under the brand SpringerOpen. It covers topics ranging from scientific research to innovative approaches for technology implementation to analysis of economic, social and environmental impacts of sustainable energy systems.