随机动力系统的同步率和极限规律

IF 1 3区 数学 Q1 MATHEMATICS
Katrin Gelfert, Graccyela Salcedo
{"title":"随机动力系统的同步率和极限规律","authors":"Katrin Gelfert, Graccyela Salcedo","doi":"10.1007/s00209-024-03571-z","DOIUrl":null,"url":null,"abstract":"<p>We study general random dynamical systems of continuous maps on some compact metric space. Assuming a local contraction condition and proximality, we establish probabilistic limit laws such as the (functional) central limit theorem, the strong law of large numbers, and the law of the iterated logarithm. Moreover, we study exponential synchronization and synchronization on average. In the particular case of iterated function systems on <span>\\({\\mathbb {S}}^1\\)</span>, we analyze synchronization rates and describe their large deviations. In the case of <span>\\(C^{1+\\beta }\\)</span>-diffeomorphisms, these deviations on random orbits are obtained from the large deviations of the expected Lyapunov exponent.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"15 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchronization rates and limit laws for random dynamical systems\",\"authors\":\"Katrin Gelfert, Graccyela Salcedo\",\"doi\":\"10.1007/s00209-024-03571-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study general random dynamical systems of continuous maps on some compact metric space. Assuming a local contraction condition and proximality, we establish probabilistic limit laws such as the (functional) central limit theorem, the strong law of large numbers, and the law of the iterated logarithm. Moreover, we study exponential synchronization and synchronization on average. In the particular case of iterated function systems on <span>\\\\({\\\\mathbb {S}}^1\\\\)</span>, we analyze synchronization rates and describe their large deviations. In the case of <span>\\\\(C^{1+\\\\beta }\\\\)</span>-diffeomorphisms, these deviations on random orbits are obtained from the large deviations of the expected Lyapunov exponent.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03571-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03571-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究某些紧凑度量空间上连续映射的一般随机动力系统。假设存在局部收缩条件和近似性,我们建立了概率极限定律,如(函数)中心极限定理、强大数定律和迭代对数定律。此外,我们还研究了指数同步和平均同步。在 \({\mathbb {S}}^1\) 上的迭代函数系统的特殊情况下,我们分析了同步率并描述了它们的大偏差。在 \(C^{1+\beta }\)-diffomorphisms 的情况下,这些随机轨道上的偏差是从预期 Lyapunov 指数的大偏差中得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synchronization rates and limit laws for random dynamical systems

Synchronization rates and limit laws for random dynamical systems

We study general random dynamical systems of continuous maps on some compact metric space. Assuming a local contraction condition and proximality, we establish probabilistic limit laws such as the (functional) central limit theorem, the strong law of large numbers, and the law of the iterated logarithm. Moreover, we study exponential synchronization and synchronization on average. In the particular case of iterated function systems on \({\mathbb {S}}^1\), we analyze synchronization rates and describe their large deviations. In the case of \(C^{1+\beta }\)-diffeomorphisms, these deviations on random orbits are obtained from the large deviations of the expected Lyapunov exponent.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信