Lipschitz 域中系数无界的亚线性椭圆方程

IF 1.1 3区 数学 Q1 MATHEMATICS
Kentaro Hirata
{"title":"Lipschitz 域中系数无界的亚线性椭圆方程","authors":"Kentaro Hirata","doi":"10.1007/s00025-024-02246-9","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with the homogeneous Dirichlet problem for a sublinear elliptic equation with unbounded coefficients in a Lipschitz domain. Bilateral a priori estimates for positive solutions and a priori upper estimates for their gradients are presented as a byproduct of the boundary Harnack principle. These estimates allow us to show the uniqueness of a positive solution of the homogeneous Dirichlet problem under no information about normal derivatives unlike in smooth domains.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sublinear Elliptic Equations with Unbounded Coefficients in Lipschitz Domains\",\"authors\":\"Kentaro Hirata\",\"doi\":\"10.1007/s00025-024-02246-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerned with the homogeneous Dirichlet problem for a sublinear elliptic equation with unbounded coefficients in a Lipschitz domain. Bilateral a priori estimates for positive solutions and a priori upper estimates for their gradients are presented as a byproduct of the boundary Harnack principle. These estimates allow us to show the uniqueness of a positive solution of the homogeneous Dirichlet problem under no information about normal derivatives unlike in smooth domains.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02246-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02246-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文关注的是在 Lipschitz 域中系数无界的亚线性椭圆方程的同质 Dirichlet 问题。作为边界哈纳克原理的副产品,本文提出了正解的双边先验估计及其梯度的先验上限估计。通过这些估计值,我们可以证明,与光滑域不同,在没有法导数信息的情况下,均质德里赫特问题正解的唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sublinear Elliptic Equations with Unbounded Coefficients in Lipschitz Domains

This paper is concerned with the homogeneous Dirichlet problem for a sublinear elliptic equation with unbounded coefficients in a Lipschitz domain. Bilateral a priori estimates for positive solutions and a priori upper estimates for their gradients are presented as a byproduct of the boundary Harnack principle. These estimates allow us to show the uniqueness of a positive solution of the homogeneous Dirichlet problem under no information about normal derivatives unlike in smooth domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信