离散贝塞尔函数和离散波方程

IF 1.1 3区 数学 Q1 MATHEMATICS
Amar Bašić, Lejla Smajlović, Zenan Šabanac
{"title":"离散贝塞尔函数和离散波方程","authors":"Amar Bašić, Lejla Smajlović, Zenan Šabanac","doi":"10.1007/s00025-024-02235-y","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study four discrete Bessel functions which are solutions to the discretization of Bessel differential equations when the time derivative is replaced by the forward and the backward difference. We focus on discrete Bessel equations with the time derivative being the backward difference and derive their solutions: the discrete <i>I</i>-Bessel function <span>\\(\\overline{I}_n^c(t)\\)</span> and the discrete <i>J</i>-Bessel function <span>\\(\\overline{J}_n^c(t)\\)</span>, <span>\\(t\\in \\mathbb {Z}\\)</span>, <span>\\(n\\in \\mathbb {N}_0\\)</span>. We then study transformation properties of those functions and describe their asymptotic behaviour as <span>\\(t\\rightarrow \\infty \\)</span> and as <span>\\(n\\rightarrow \\infty \\)</span>. Moreover, we prove that the (unilateral) Laplace transform of <span>\\(\\overline{I}_n^c\\)</span> and <span>\\(\\overline{J}_n^c\\)</span> in the timescale <span>\\(T=\\mathbb {Z}\\)</span> with the delta derivative being the backward difference equals the Laplace transform of classical <i>I</i>-Bessel and <i>J</i>-Bessel functions <span>\\(\\mathcal {I}_n(cx)\\)</span> and <span>\\(\\mathcal {J}_n(cx)\\)</span>, respectively. As an application, we study the discrete wave equation on the integers in the timescale <span>\\(T=\\mathbb {Z}\\)</span> and express its fundamental and general solution in terms of <span>\\(\\overline{J}_n^c(t)\\)</span>. Going further, we show that the first fundamental solution of this discrete wave equation oscillates with the exponentially decaying amplitude as time tends to infinity.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Bessel Functions and Discrete Wave Equation\",\"authors\":\"Amar Bašić, Lejla Smajlović, Zenan Šabanac\",\"doi\":\"10.1007/s00025-024-02235-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study four discrete Bessel functions which are solutions to the discretization of Bessel differential equations when the time derivative is replaced by the forward and the backward difference. We focus on discrete Bessel equations with the time derivative being the backward difference and derive their solutions: the discrete <i>I</i>-Bessel function <span>\\\\(\\\\overline{I}_n^c(t)\\\\)</span> and the discrete <i>J</i>-Bessel function <span>\\\\(\\\\overline{J}_n^c(t)\\\\)</span>, <span>\\\\(t\\\\in \\\\mathbb {Z}\\\\)</span>, <span>\\\\(n\\\\in \\\\mathbb {N}_0\\\\)</span>. We then study transformation properties of those functions and describe their asymptotic behaviour as <span>\\\\(t\\\\rightarrow \\\\infty \\\\)</span> and as <span>\\\\(n\\\\rightarrow \\\\infty \\\\)</span>. Moreover, we prove that the (unilateral) Laplace transform of <span>\\\\(\\\\overline{I}_n^c\\\\)</span> and <span>\\\\(\\\\overline{J}_n^c\\\\)</span> in the timescale <span>\\\\(T=\\\\mathbb {Z}\\\\)</span> with the delta derivative being the backward difference equals the Laplace transform of classical <i>I</i>-Bessel and <i>J</i>-Bessel functions <span>\\\\(\\\\mathcal {I}_n(cx)\\\\)</span> and <span>\\\\(\\\\mathcal {J}_n(cx)\\\\)</span>, respectively. As an application, we study the discrete wave equation on the integers in the timescale <span>\\\\(T=\\\\mathbb {Z}\\\\)</span> and express its fundamental and general solution in terms of <span>\\\\(\\\\overline{J}_n^c(t)\\\\)</span>. Going further, we show that the first fundamental solution of this discrete wave equation oscillates with the exponentially decaying amplitude as time tends to infinity.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02235-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02235-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了四种离散贝塞尔函数,它们是贝塞尔微分方程离散化的解,当时间导数被前向和后向差分取代时。我们聚焦于时间导数为后向差分的离散贝塞尔方程,并推导出它们的解:离散I-贝塞尔函数(\overline{I}_n^c(t)\)和离散J-贝塞尔函数(\overline{J}_n^c(t)\)、(t\in \mathbb {Z}\)、(n\in \mathbb {N}_0\)。然后,我们研究这些函数的变换性质,并描述它们的渐近行为(如 \(t\rightarrow \infty \)和 \(n\rightarrow \infty \))。此外、我们证明,在时间尺度 \(T=\mathbb {Z}\)上,\(\overline{I}_n^c\)和\(\overline{J}_n^c\)的(单边)拉普拉斯变换(三角导数为后向差分)等于经典的 I-Bessel函数和J-Bessel函数分别是分别。作为应用,我们研究了时间尺度为 \(T=\mathbb {Z}/)的整数上的离散波方程,并用 \(\overline{J}_n^c(t)\) 表达了它的基本和一般解。更进一步,我们证明这个离散波方程的第一个基本解随着时间趋于无穷大而振荡,振幅呈指数衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete Bessel Functions and Discrete Wave Equation

In this paper, we study four discrete Bessel functions which are solutions to the discretization of Bessel differential equations when the time derivative is replaced by the forward and the backward difference. We focus on discrete Bessel equations with the time derivative being the backward difference and derive their solutions: the discrete I-Bessel function \(\overline{I}_n^c(t)\) and the discrete J-Bessel function \(\overline{J}_n^c(t)\), \(t\in \mathbb {Z}\), \(n\in \mathbb {N}_0\). We then study transformation properties of those functions and describe their asymptotic behaviour as \(t\rightarrow \infty \) and as \(n\rightarrow \infty \). Moreover, we prove that the (unilateral) Laplace transform of \(\overline{I}_n^c\) and \(\overline{J}_n^c\) in the timescale \(T=\mathbb {Z}\) with the delta derivative being the backward difference equals the Laplace transform of classical I-Bessel and J-Bessel functions \(\mathcal {I}_n(cx)\) and \(\mathcal {J}_n(cx)\), respectively. As an application, we study the discrete wave equation on the integers in the timescale \(T=\mathbb {Z}\) and express its fundamental and general solution in terms of \(\overline{J}_n^c(t)\). Going further, we show that the first fundamental solution of this discrete wave equation oscillates with the exponentially decaying amplitude as time tends to infinity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信