群代数的等距约旦同构

IF 1.1 3区 数学 Q1 MATHEMATICS
J. Alaminos, J. Extremera, C. Godoy, A. R. Villena
{"title":"群代数的等距约旦同构","authors":"J. Alaminos, J. Extremera, C. Godoy, A. R. Villena","doi":"10.1007/s00025-024-02244-x","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> and <i>H</i> be locally compact groups. We will show that each contractive Jordan isomorphism <span>\\(\\Phi :L^1(G)\\rightarrow L^1(H)\\)</span> is either an isometric isomorphism or an isometric anti-isomorphism. We will apply this result to study isometric two-sided zero product preservers on group algebras and, further, to study local and approximately local isometric automorphisms of group algebras.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isometric Jordan Isomorphisms of Group Algebras\",\"authors\":\"J. Alaminos, J. Extremera, C. Godoy, A. R. Villena\",\"doi\":\"10.1007/s00025-024-02244-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i> and <i>H</i> be locally compact groups. We will show that each contractive Jordan isomorphism <span>\\\\(\\\\Phi :L^1(G)\\\\rightarrow L^1(H)\\\\)</span> is either an isometric isomorphism or an isometric anti-isomorphism. We will apply this result to study isometric two-sided zero product preservers on group algebras and, further, to study local and approximately local isometric automorphisms of group algebras.</p>\",\"PeriodicalId\":54490,\"journal\":{\"name\":\"Results in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00025-024-02244-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02244-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 G 和 H 都是局部紧凑群。我们将证明,每个收缩约旦同构(Phi :L^1(G)\rightarrow L^1(H))要么是等距同构,要么是等距反同构。我们将应用这一结果来研究群集上的等距双面零积预器,并进一步研究群集的局部和近似局部等距自变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isometric Jordan Isomorphisms of Group Algebras

Let G and H be locally compact groups. We will show that each contractive Jordan isomorphism \(\Phi :L^1(G)\rightarrow L^1(H)\) is either an isometric isomorphism or an isometric anti-isomorphism. We will apply this result to study isometric two-sided zero product preservers on group algebras and, further, to study local and approximately local isometric automorphisms of group algebras.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信