小曲率集中流形上的差距定理

IF 1 3区 数学 Q1 MATHEMATICS
Pak-Yeung Chan, Man-Chun Lee
{"title":"小曲率集中流形上的差距定理","authors":"Pak-Yeung Chan, Man-Chun Lee","doi":"10.1007/s00209-024-03570-0","DOIUrl":null,"url":null,"abstract":"<p>In this work, we show that complete non-compact manifolds with non-negative Ricci curvature, Euclidean volume growth and sufficiently small curvature concentration are necessarily flat Euclidean space.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"143 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gap Theorem on manifolds with small curvature concentration\",\"authors\":\"Pak-Yeung Chan, Man-Chun Lee\",\"doi\":\"10.1007/s00209-024-03570-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, we show that complete non-compact manifolds with non-negative Ricci curvature, Euclidean volume growth and sufficiently small curvature concentration are necessarily flat Euclidean space.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"143 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03570-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03570-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们证明了具有非负里奇曲率、欧几里得体积增长和足够小的曲率集中的完整非紧凑流形必然是平坦的欧几里得空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gap Theorem on manifolds with small curvature concentration

In this work, we show that complete non-compact manifolds with non-negative Ricci curvature, Euclidean volume growth and sufficiently small curvature concentration are necessarily flat Euclidean space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信