精确范畴的阿贝尔包络和最高权重范畴

IF 1 3区 数学 Q1 MATHEMATICS
Agnieszka Bodzenta, Alexey Bondal
{"title":"精确范畴的阿贝尔包络和最高权重范畴","authors":"Agnieszka Bodzenta, Alexey Bondal","doi":"10.1007/s00209-024-03543-3","DOIUrl":null,"url":null,"abstract":"<p>We define admissible and weakly admissible subcategories in exact categories and prove that the former induce semi-orthogonal decompositions on the derived categories. We develop the theory of thin exact categories, an exact-category analogue of triangulated categories generated by exceptional sequences. The right and left abelian envelopes of exact categories are introduced, an example being the category of coherent sheaves on a scheme as the right envelope of the category of vector bundles. The existence of right (left) abelian envelopes is proven for exact categories with projectively (injectively) generating subcategories with weak (co)kernels. We show that highest weight categories are precisely the right/left envelopes of thin categories. Ringel duality on highest weight categories is interpreted as a duality between the right and left abelian envelopes of a thin exact category. A duality for thin exact categories compatible with Ringel duality is introduced by means of derived categories and Serre functor on them.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abelian envelopes of exact categories and highest weight categories\",\"authors\":\"Agnieszka Bodzenta, Alexey Bondal\",\"doi\":\"10.1007/s00209-024-03543-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We define admissible and weakly admissible subcategories in exact categories and prove that the former induce semi-orthogonal decompositions on the derived categories. We develop the theory of thin exact categories, an exact-category analogue of triangulated categories generated by exceptional sequences. The right and left abelian envelopes of exact categories are introduced, an example being the category of coherent sheaves on a scheme as the right envelope of the category of vector bundles. The existence of right (left) abelian envelopes is proven for exact categories with projectively (injectively) generating subcategories with weak (co)kernels. We show that highest weight categories are precisely the right/left envelopes of thin categories. Ringel duality on highest weight categories is interpreted as a duality between the right and left abelian envelopes of a thin exact category. A duality for thin exact categories compatible with Ringel duality is introduced by means of derived categories and Serre functor on them.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03543-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03543-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们定义了精确范畴中的可容许子范畴和弱可容许子范畴,并证明前者在派生范畴上诱导半正交分解。我们发展了薄精确范畴的理论,这是由例外序列生成的三角范畴的精确范畴类似物。我们介绍了精确范畴的右包络和左包络,一个例子是作为向量束范畴右包络的方案上相干剪切范畴。对于具有弱(共)核的投影(注入)生成子类的精确范畴,右(左)无边际包络的存在得到了证明。我们证明了最高权范畴正是薄范畴的右(左)包络。最高权重范畴的林格尔对偶性被解释为薄精确范畴的左右阿贝尔包络之间的对偶性。通过派生范畴和塞尔漏子,我们引入了与林格尔对偶性兼容的薄精确范畴的对偶性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Abelian envelopes of exact categories and highest weight categories

Abelian envelopes of exact categories and highest weight categories

We define admissible and weakly admissible subcategories in exact categories and prove that the former induce semi-orthogonal decompositions on the derived categories. We develop the theory of thin exact categories, an exact-category analogue of triangulated categories generated by exceptional sequences. The right and left abelian envelopes of exact categories are introduced, an example being the category of coherent sheaves on a scheme as the right envelope of the category of vector bundles. The existence of right (left) abelian envelopes is proven for exact categories with projectively (injectively) generating subcategories with weak (co)kernels. We show that highest weight categories are precisely the right/left envelopes of thin categories. Ringel duality on highest weight categories is interpreted as a duality between the right and left abelian envelopes of a thin exact category. A duality for thin exact categories compatible with Ringel duality is introduced by means of derived categories and Serre functor on them.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信