具有碰撞临界点的二次有理函数的阿贝尔伽罗瓦群

IF 1 3区 数学 Q1 MATHEMATICS
Robert L. Benedetto, Anna Dietrich
{"title":"具有碰撞临界点的二次有理函数的阿贝尔伽罗瓦群","authors":"Robert L. Benedetto, Anna Dietrich","doi":"10.1007/s00209-024-03566-w","DOIUrl":null,"url":null,"abstract":"<p>Let <i>K</i> be a field, and let <span>\\(f\\in K(z)\\)</span> be rational function. The preimages of a point <span>\\(x_0\\in \\mathbb {P}^1(K)\\)</span> under iterates of <i>f</i> have a natural tree structure. As a result, the Galois group of the resulting field extension of <i>K</i> naturally embeds into the automorphism group of this tree. In unpublished work from 2013, Pink described a certain proper subgroup <span>\\(M_{\\ell }\\)</span> that this so-called arboreal Galois group <span>\\(G_{\\infty }\\)</span> must lie in if <i>f</i> is quadratic and its two critical points collide at the <span>\\(\\ell \\)</span>-th iteration. After presenting a new description of <span>\\(M_{\\ell }\\)</span> and a new proof of Pink’s theorem, we state and prove necessary and sufficient conditions for <span>\\(G_{\\infty }\\)</span> to be the full group <span>\\(M_{\\ell }\\)</span>.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"49 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arboreal Galois groups for quadratic rational functions with colliding critical points\",\"authors\":\"Robert L. Benedetto, Anna Dietrich\",\"doi\":\"10.1007/s00209-024-03566-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>K</i> be a field, and let <span>\\\\(f\\\\in K(z)\\\\)</span> be rational function. The preimages of a point <span>\\\\(x_0\\\\in \\\\mathbb {P}^1(K)\\\\)</span> under iterates of <i>f</i> have a natural tree structure. As a result, the Galois group of the resulting field extension of <i>K</i> naturally embeds into the automorphism group of this tree. In unpublished work from 2013, Pink described a certain proper subgroup <span>\\\\(M_{\\\\ell }\\\\)</span> that this so-called arboreal Galois group <span>\\\\(G_{\\\\infty }\\\\)</span> must lie in if <i>f</i> is quadratic and its two critical points collide at the <span>\\\\(\\\\ell \\\\)</span>-th iteration. After presenting a new description of <span>\\\\(M_{\\\\ell }\\\\)</span> and a new proof of Pink’s theorem, we state and prove necessary and sufficient conditions for <span>\\\\(G_{\\\\infty }\\\\)</span> to be the full group <span>\\\\(M_{\\\\ell }\\\\)</span>.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03566-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03566-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 K 是一个域,让 \(f\in K(z)\) 是有理函数。在 f 的迭代下,点 \(x_0\in \mathbb {P}^1(K)\) 的前像具有自然的树状结构。因此,K 的结果域扩展的伽罗瓦群自然嵌入到这棵树的自变群中。在 2013 年未发表的工作中,Pink 描述了如果 f 是二次的,并且它的两个临界点在第 \(\ell \)次迭代处碰撞,那么这个所谓的树状伽罗瓦群 \(G_{\infty }\) 必须位于某个适当的子群 \(M_{\ell }\) 中。在提出了对\(M_{\ell }\) 的新描述和对平克定理的新证明之后,我们陈述并证明了\(G_{\infty }\) 成为全群\(M_{\ell }\)的必要条件和充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Arboreal Galois groups for quadratic rational functions with colliding critical points

Arboreal Galois groups for quadratic rational functions with colliding critical points

Let K be a field, and let \(f\in K(z)\) be rational function. The preimages of a point \(x_0\in \mathbb {P}^1(K)\) under iterates of f have a natural tree structure. As a result, the Galois group of the resulting field extension of K naturally embeds into the automorphism group of this tree. In unpublished work from 2013, Pink described a certain proper subgroup \(M_{\ell }\) that this so-called arboreal Galois group \(G_{\infty }\) must lie in if f is quadratic and its two critical points collide at the \(\ell \)-th iteration. After presenting a new description of \(M_{\ell }\) and a new proof of Pink’s theorem, we state and prove necessary and sufficient conditions for \(G_{\infty }\) to be the full group \(M_{\ell }\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信