通用新物理学潜空间

Anna Hallin, Gregor Kasieczka, Sabine Kraml, André Lessa, Louis Moureaux, Tore von Schwartz, David Shih
{"title":"通用新物理学潜空间","authors":"Anna Hallin, Gregor Kasieczka, Sabine Kraml, André Lessa, Louis Moureaux, Tore von Schwartz, David Shih","doi":"arxiv-2407.20315","DOIUrl":null,"url":null,"abstract":"We develop a machine learning method for mapping data originating from both\nStandard Model processes and various theories beyond the Standard Model into a\nunified representation (latent) space while conserving information about the\nrelationship between the underlying theories. We apply our method to three\nexamples of new physics at the LHC of increasing complexity, showing that\nmodels can be clustered according to their LHC phenomenology: different models\nare mapped to distinct regions in latent space, while indistinguishable models\nare mapped to the same region. This opens interesting new avenues on several\nfronts, such as model discrimination, selection of representative benchmark\nscenarios, and identifying gaps in the coverage of model space.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"130 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Universal New Physics Latent Space\",\"authors\":\"Anna Hallin, Gregor Kasieczka, Sabine Kraml, André Lessa, Louis Moureaux, Tore von Schwartz, David Shih\",\"doi\":\"arxiv-2407.20315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a machine learning method for mapping data originating from both\\nStandard Model processes and various theories beyond the Standard Model into a\\nunified representation (latent) space while conserving information about the\\nrelationship between the underlying theories. We apply our method to three\\nexamples of new physics at the LHC of increasing complexity, showing that\\nmodels can be clustered according to their LHC phenomenology: different models\\nare mapped to distinct regions in latent space, while indistinguishable models\\nare mapped to the same region. This opens interesting new avenues on several\\nfronts, such as model discrimination, selection of representative benchmark\\nscenarios, and identifying gaps in the coverage of model space.\",\"PeriodicalId\":501065,\"journal\":{\"name\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"volume\":\"130 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种机器学习方法,用于将源自标准模型过程和标准模型之外的各种理论的数据映射到一个统一的表示(潜在)空间,同时保留了有关基础理论之间关系的信息。我们将我们的方法应用于大型强子对撞机上三个复杂度不断增加的新物理实例,结果表明模型可以根据它们的大型强子对撞机现象学进行聚类:不同的模型被映射到潜在空间的不同区域,而无法区分的模型则被映射到同一区域。这在多个方面开辟了有趣的新途径,如模型鉴别、选择有代表性的基准情景,以及确定模型空间覆盖范围中的空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Universal New Physics Latent Space
We develop a machine learning method for mapping data originating from both Standard Model processes and various theories beyond the Standard Model into a unified representation (latent) space while conserving information about the relationship between the underlying theories. We apply our method to three examples of new physics at the LHC of increasing complexity, showing that models can be clustered according to their LHC phenomenology: different models are mapped to distinct regions in latent space, while indistinguishable models are mapped to the same region. This opens interesting new avenues on several fronts, such as model discrimination, selection of representative benchmark scenarios, and identifying gaps in the coverage of model space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信