TrackSorter:基于变压器的排序算法,用于高能物理中的轨迹查找

Yash Melkani, Xiangyang Ju
{"title":"TrackSorter:基于变压器的排序算法,用于高能物理中的轨迹查找","authors":"Yash Melkani, Xiangyang Ju","doi":"arxiv-2407.21290","DOIUrl":null,"url":null,"abstract":"Track finding in particle data is a challenging pattern recognition problem\nin High Energy Physics. It takes as inputs a point cloud of space points and\nlabels them so that space points created by the same particle have the same\nlabel. The list of space points with the same label is a track candidate. We\nargue that this pattern recognition problem can be formulated as a sorting\nproblem, of which the inputs are a list of space points sorted by their\ndistances away from the collision points and the outputs are the space points\nsorted by their labels. In this paper, we propose the TrackSorter algorithm: a\nTransformer-based algorithm for pattern recognition in particle data.\nTrackSorter uses a simple tokenization scheme to convert space points into\ndiscrete tokens. It then uses the tokenized space points as inputs and sorts\nthe input tokens into track candidates. TrackSorter is a novel end-to-end track\nfinding algorithm that leverages Transformer-based models to solve pattern\nrecognition problems. It is evaluated on the TrackML dataset and has good track\nfinding performance.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"413 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TrackSorter: A Transformer-based sorting algorithm for track finding in High Energy Physics\",\"authors\":\"Yash Melkani, Xiangyang Ju\",\"doi\":\"arxiv-2407.21290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Track finding in particle data is a challenging pattern recognition problem\\nin High Energy Physics. It takes as inputs a point cloud of space points and\\nlabels them so that space points created by the same particle have the same\\nlabel. The list of space points with the same label is a track candidate. We\\nargue that this pattern recognition problem can be formulated as a sorting\\nproblem, of which the inputs are a list of space points sorted by their\\ndistances away from the collision points and the outputs are the space points\\nsorted by their labels. In this paper, we propose the TrackSorter algorithm: a\\nTransformer-based algorithm for pattern recognition in particle data.\\nTrackSorter uses a simple tokenization scheme to convert space points into\\ndiscrete tokens. It then uses the tokenized space points as inputs and sorts\\nthe input tokens into track candidates. TrackSorter is a novel end-to-end track\\nfinding algorithm that leverages Transformer-based models to solve pattern\\nrecognition problems. It is evaluated on the TrackML dataset and has good track\\nfinding performance.\",\"PeriodicalId\":501065,\"journal\":{\"name\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"volume\":\"413 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Data Analysis, Statistics and Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

粒子数据中的轨迹查找是高能物理中一个具有挑战性的模式识别问题。它将空间点的点云作为输入,并对其进行标注,从而使同一粒子产生的空间点具有相同的标签。具有相同标签的空间点列表就是候选轨迹。假设这个模式识别问题可以表述为一个排序问题,其中输入是按距离碰撞点的距离排序的空间点列表,输出是按标签排序的空间点。在本文中,我们提出了 TrackSorter 算法:一种基于变换器的粒子数据模式识别算法。然后,它将标记化的空间点作为输入,并将输入标记排序为候选轨迹。TrackSorter 是一种新颖的端到端轨迹查找算法,它利用基于 Transformer 的模型来解决模式识别问题。该算法在 TrackML 数据集上进行了评估,具有良好的寻轨性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TrackSorter: A Transformer-based sorting algorithm for track finding in High Energy Physics
Track finding in particle data is a challenging pattern recognition problem in High Energy Physics. It takes as inputs a point cloud of space points and labels them so that space points created by the same particle have the same label. The list of space points with the same label is a track candidate. We argue that this pattern recognition problem can be formulated as a sorting problem, of which the inputs are a list of space points sorted by their distances away from the collision points and the outputs are the space points sorted by their labels. In this paper, we propose the TrackSorter algorithm: a Transformer-based algorithm for pattern recognition in particle data. TrackSorter uses a simple tokenization scheme to convert space points into discrete tokens. It then uses the tokenized space points as inputs and sorts the input tokens into track candidates. TrackSorter is a novel end-to-end track finding algorithm that leverages Transformer-based models to solve pattern recognition problems. It is evaluated on the TrackML dataset and has good track finding performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信