PyamilySeq:用于跨物种和属的可解释基因(再)聚类和泛基因组推断的 Python 工具

Nicholas J. Dimonaco
{"title":"PyamilySeq:用于跨物种和属的可解释基因(再)聚类和泛基因组推断的 Python 工具","authors":"Nicholas J. Dimonaco","doi":"arxiv-2407.19328","DOIUrl":null,"url":null,"abstract":"PyamilySeq is a Python-based tool designed for interpretable gene clustering\nand pangenomic inference, supporting analyses at both species and genus levels.\nIt facilitates the clustering of gene sequences into families based on sequence\nsimilarity using CD-HIT, and can take the output of tried-and-tested sequence\nclustering tools such as CD-HIT, BLAST, DIAMOND, and MMseqs2. PyamilySeq is\ndistinctive in its ability to integrate new sequences into existing clusters,\nproviding a robust framework for iterative analysis while preserving the\noriginal clusters, useful when reannotating genomes. In addition to the\nstandard Species mode which as with other tools performs core-gene analysis\nacross a species range, PyamilySeq can be run in Genus mode where it detects\nthe presence of gene families shared across multiple genera. These features\nenhance the tools applicability for ongoing and past genomic studies and\ncomparative analyses. PyamilySeq generates comprehensive outputs, including\ngene presence-absence matrices and aligned sequence data, enabling downstream\nanalysis and interpretation of the identified gene groups and pangenomic data.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PyamilySeq: A Python Tool for Interpretable Gene (Re)Clustering and Pangenomic Inference Across Species and Genera\",\"authors\":\"Nicholas J. Dimonaco\",\"doi\":\"arxiv-2407.19328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PyamilySeq is a Python-based tool designed for interpretable gene clustering\\nand pangenomic inference, supporting analyses at both species and genus levels.\\nIt facilitates the clustering of gene sequences into families based on sequence\\nsimilarity using CD-HIT, and can take the output of tried-and-tested sequence\\nclustering tools such as CD-HIT, BLAST, DIAMOND, and MMseqs2. PyamilySeq is\\ndistinctive in its ability to integrate new sequences into existing clusters,\\nproviding a robust framework for iterative analysis while preserving the\\noriginal clusters, useful when reannotating genomes. In addition to the\\nstandard Species mode which as with other tools performs core-gene analysis\\nacross a species range, PyamilySeq can be run in Genus mode where it detects\\nthe presence of gene families shared across multiple genera. These features\\nenhance the tools applicability for ongoing and past genomic studies and\\ncomparative analyses. PyamilySeq generates comprehensive outputs, including\\ngene presence-absence matrices and aligned sequence data, enabling downstream\\nanalysis and interpretation of the identified gene groups and pangenomic data.\",\"PeriodicalId\":501070,\"journal\":{\"name\":\"arXiv - QuanBio - Genomics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.19328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

PyamilySeq 是一款基于 Python- 的工具,设计用于可解释的基因聚类和泛基因组推断,支持物种和种属水平的分析。它可以使用 CD-HIT,根据序列相似性将基因序列聚类为科,并可以使用 CD-HIT、BLAST、DIAMOND 和 MMseqs2 等久经考验的序列聚类工具的输出结果。PyamilySeq 的独特之处在于它能将新序列整合到现有聚类中,为迭代分析提供了一个稳健的框架,同时保留了原始聚类,这在重新标注基因组时非常有用。与其他工具一样,PyamilySeq 除了在标准的 "物种 "模式下进行跨物种核心基因分析外,还可以在 "属 "模式下运行,检测是否存在跨属共享的基因家族。这些功能增强了该工具在当前和过去的基因组研究和比较分析中的适用性。PyamilySeq 可生成全面的输出结果,包括基因存在-不存在矩阵和对齐的序列数据,从而可对已识别的基因组和泛基因组数据进行下游分析和解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PyamilySeq: A Python Tool for Interpretable Gene (Re)Clustering and Pangenomic Inference Across Species and Genera
PyamilySeq is a Python-based tool designed for interpretable gene clustering and pangenomic inference, supporting analyses at both species and genus levels. It facilitates the clustering of gene sequences into families based on sequence similarity using CD-HIT, and can take the output of tried-and-tested sequence clustering tools such as CD-HIT, BLAST, DIAMOND, and MMseqs2. PyamilySeq is distinctive in its ability to integrate new sequences into existing clusters, providing a robust framework for iterative analysis while preserving the original clusters, useful when reannotating genomes. In addition to the standard Species mode which as with other tools performs core-gene analysis across a species range, PyamilySeq can be run in Genus mode where it detects the presence of gene families shared across multiple genera. These features enhance the tools applicability for ongoing and past genomic studies and comparative analyses. PyamilySeq generates comprehensive outputs, including gene presence-absence matrices and aligned sequence data, enabling downstream analysis and interpretation of the identified gene groups and pangenomic data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信