具有自适应平均场耦合的网络中的卡农级联

Juan Balzer, Rico Berner, Kathy Lüdge, Sebastian Wieczorek, Jürgen Kurths, Serhiy Yanchuk
{"title":"具有自适应平均场耦合的网络中的卡农级联","authors":"Juan Balzer, Rico Berner, Kathy Lüdge, Sebastian Wieczorek, Jürgen Kurths, Serhiy Yanchuk","doi":"arxiv-2407.20758","DOIUrl":null,"url":null,"abstract":"Canard cascading (CC) is observed in dynamical networks with global adaptive\ncoupling. It is a fast-slow phenomenon characterized by a recurrent sequence of\nfast transitions between distinct and slowly evolving quasi-stationary states.\nIn this letter, we uncover the dynamical mechanisms behind CC, using an\nillustrative example of globally and adaptively coupled semiconductor lasers,\nwhere CC represents sequential switching on and off the lasers. Firstly, we\nshow that CC is a robust and truly adaptive network effect that is scalable\nwith network size and does not occur without adaptation. Secondly, we uncover\nmultiple saddle slow manifolds (unstable quasi-stationary states) linked by\nheteroclinic orbits (fast transitions) in the phase space of the system. This\nallows us to identify CC with a novel heteroclinic canard orbit that organises\ndifferent unstable quasi-stationary states into an intricate fast-slow limit\ncycle. Although individual quasi-stationary states are unstable (saddles), the\nCC cycle as a whole is attractive and robust to parameter changes.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Canard cascading in networks with adaptive mean-field coupling\",\"authors\":\"Juan Balzer, Rico Berner, Kathy Lüdge, Sebastian Wieczorek, Jürgen Kurths, Serhiy Yanchuk\",\"doi\":\"arxiv-2407.20758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Canard cascading (CC) is observed in dynamical networks with global adaptive\\ncoupling. It is a fast-slow phenomenon characterized by a recurrent sequence of\\nfast transitions between distinct and slowly evolving quasi-stationary states.\\nIn this letter, we uncover the dynamical mechanisms behind CC, using an\\nillustrative example of globally and adaptively coupled semiconductor lasers,\\nwhere CC represents sequential switching on and off the lasers. Firstly, we\\nshow that CC is a robust and truly adaptive network effect that is scalable\\nwith network size and does not occur without adaptation. Secondly, we uncover\\nmultiple saddle slow manifolds (unstable quasi-stationary states) linked by\\nheteroclinic orbits (fast transitions) in the phase space of the system. This\\nallows us to identify CC with a novel heteroclinic canard orbit that organises\\ndifferent unstable quasi-stationary states into an intricate fast-slow limit\\ncycle. Although individual quasi-stationary states are unstable (saddles), the\\nCC cycle as a whole is attractive and robust to parameter changes.\",\"PeriodicalId\":501370,\"journal\":{\"name\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20758\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在具有全局自适应耦合的动力学网络中可以观察到卡纳德级联(CC)现象。在这封信中,我们以全局自适应耦合半导体激光器为例,揭示了 CC 背后的动力学机制。首先,我们证明了 CC 是一种稳健的、真正的自适应网络效应,它可以随着网络规模的扩大而扩展,并且在没有自适应的情况下不会发生。其次,我们在系统的相空间中发现了多个鞍慢流形(不稳定的准稳态),这些鞍慢流形由外折线轨道(快速转换)连接。这使我们能够识别出 CC 具有一种新的异折线卡纳轨道,它将不同的不稳定准稳态组织成一个错综复杂的快慢极限循环。虽然单个准稳态是不稳定的(鞍状),但 CC 循环作为一个整体对参数变化具有吸引力和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Canard cascading in networks with adaptive mean-field coupling
Canard cascading (CC) is observed in dynamical networks with global adaptive coupling. It is a fast-slow phenomenon characterized by a recurrent sequence of fast transitions between distinct and slowly evolving quasi-stationary states. In this letter, we uncover the dynamical mechanisms behind CC, using an illustrative example of globally and adaptively coupled semiconductor lasers, where CC represents sequential switching on and off the lasers. Firstly, we show that CC is a robust and truly adaptive network effect that is scalable with network size and does not occur without adaptation. Secondly, we uncover multiple saddle slow manifolds (unstable quasi-stationary states) linked by heteroclinic orbits (fast transitions) in the phase space of the system. This allows us to identify CC with a novel heteroclinic canard orbit that organises different unstable quasi-stationary states into an intricate fast-slow limit cycle. Although individual quasi-stationary states are unstable (saddles), the CC cycle as a whole is attractive and robust to parameter changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信