阻尼驱动二原子粒状晶体的全局分岔

D. Pozharskiy, I. G. Kevrekidis, P. G. Kevrekidis
{"title":"阻尼驱动二原子粒状晶体的全局分岔","authors":"D. Pozharskiy, I. G. Kevrekidis, P. G. Kevrekidis","doi":"arxiv-2407.19347","DOIUrl":null,"url":null,"abstract":"We revisit here the dynamics of an engineered dimer granular crystal under an\nexternal periodic drive in the presence of dissipation. Earlier findings\nincluded a saddle-node bifurcation, whose terminal point initiated the\nobservation of chaos; the system was found to exhibit bistability and potential\nquasiperiodicity. We now complement these findings by the identification of\nunstable manifolds of saddle periodic solutions (saddle points of the\nstroboscopic map) within the system dynamics. We unravel how homoclinic tangles\nof these manifolds lead to the appearance of a chaotic attractor, upon the\napparent period-doubling bifurcations that destroy invariant tori associated\nwith quasiperiodicity. These findings complement the earlier ones, offering\nmore concrete insights into the emergence of chaos within this\nhigh-dimensional, experimentally accessible system.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Bifurcations in a Damped-Driven Diatomic Granular Crystal\",\"authors\":\"D. Pozharskiy, I. G. Kevrekidis, P. G. Kevrekidis\",\"doi\":\"arxiv-2407.19347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We revisit here the dynamics of an engineered dimer granular crystal under an\\nexternal periodic drive in the presence of dissipation. Earlier findings\\nincluded a saddle-node bifurcation, whose terminal point initiated the\\nobservation of chaos; the system was found to exhibit bistability and potential\\nquasiperiodicity. We now complement these findings by the identification of\\nunstable manifolds of saddle periodic solutions (saddle points of the\\nstroboscopic map) within the system dynamics. We unravel how homoclinic tangles\\nof these manifolds lead to the appearance of a chaotic attractor, upon the\\napparent period-doubling bifurcations that destroy invariant tori associated\\nwith quasiperiodicity. These findings complement the earlier ones, offering\\nmore concrete insights into the emergence of chaos within this\\nhigh-dimensional, experimentally accessible system.\",\"PeriodicalId\":501370,\"journal\":{\"name\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.19347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们重新审视了存在耗散的外部周期性驱动下工程二聚颗粒晶体的动力学。早先的发现包括鞍节点分岔,其终点引发了混沌观测;发现该系统表现出双稳态性和潜在的等周期性。现在,我们通过在系统动力学中识别鞍周期解的不稳定流形(混沌图的鞍点)来补充这些发现。我们揭示了这些流形的同次谐波纠缠如何导致出现混沌吸引子,以及如何在明显的周期加倍分岔后破坏与准周期性相关的不变环。这些发现是对先前发现的补充,为这一可通过实验获得的高维系统中混沌的出现提供了更具体的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Bifurcations in a Damped-Driven Diatomic Granular Crystal
We revisit here the dynamics of an engineered dimer granular crystal under an external periodic drive in the presence of dissipation. Earlier findings included a saddle-node bifurcation, whose terminal point initiated the observation of chaos; the system was found to exhibit bistability and potential quasiperiodicity. We now complement these findings by the identification of unstable manifolds of saddle periodic solutions (saddle points of the stroboscopic map) within the system dynamics. We unravel how homoclinic tangles of these manifolds lead to the appearance of a chaotic attractor, upon the apparent period-doubling bifurcations that destroy invariant tori associated with quasiperiodicity. These findings complement the earlier ones, offering more concrete insights into the emergence of chaos within this high-dimensional, experimentally accessible system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信