渐近列尼亚中的细胞自动机滑翔机的非平态自致性

Q. Tyrell Davis
{"title":"渐近列尼亚中的细胞自动机滑翔机的非平态自致性","authors":"Q. Tyrell Davis","doi":"arxiv-2407.21086","DOIUrl":null,"url":null,"abstract":"Like Life, Lenia CA support a range of patterns that move, interact with\ntheir environment, and/or are modified by said interactions. These patterns\nmaintain a cohesive, self-organizing morphology, i.e. they exemplify\nautopoiesis, the self-organization principle of a network of components and\nprocesses maintaining themselves. Recent work implementing Asymptotic Lenia as\na reaction-diffusion system reported that non-Platonic behavior in standard\nLenia may depend on the clipping function, and that ALenia gliders are likely\nnot subject to non-Platonic instability. In this work I show an example of a\nglider in ALenia that depends on a certain simulation coarseness for\nautopoietic competence: when simulated with too fine spatial or temporal\nresolution the glider no longer maintains its morphology or dynamics. I also\nshow that instability maps of the asymptotic Lenia glider, and others in\ndifferent CA framworks, show fractal retention of fine boundary detail down to\nthe limit of floating point precision.","PeriodicalId":501370,"journal":{"name":"arXiv - PHYS - Pattern Formation and Solitons","volume":"101 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Platonic Autopoiesis of a Cellular Automaton Glider in Asymptotic Lenia\",\"authors\":\"Q. Tyrell Davis\",\"doi\":\"arxiv-2407.21086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Like Life, Lenia CA support a range of patterns that move, interact with\\ntheir environment, and/or are modified by said interactions. These patterns\\nmaintain a cohesive, self-organizing morphology, i.e. they exemplify\\nautopoiesis, the self-organization principle of a network of components and\\nprocesses maintaining themselves. Recent work implementing Asymptotic Lenia as\\na reaction-diffusion system reported that non-Platonic behavior in standard\\nLenia may depend on the clipping function, and that ALenia gliders are likely\\nnot subject to non-Platonic instability. In this work I show an example of a\\nglider in ALenia that depends on a certain simulation coarseness for\\nautopoietic competence: when simulated with too fine spatial or temporal\\nresolution the glider no longer maintains its morphology or dynamics. I also\\nshow that instability maps of the asymptotic Lenia glider, and others in\\ndifferent CA framworks, show fractal retention of fine boundary detail down to\\nthe limit of floating point precision.\",\"PeriodicalId\":501370,\"journal\":{\"name\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Pattern Formation and Solitons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Pattern Formation and Solitons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与生命一样,"蕾妮娅 CA "也支持一系列模式,这些模式会移动、与环境互动和/或因互动而改变。这些模式保持着一种内聚的、自组织的形态学,即它们是自组织的典范,自组织原则是一个由维持自身的组件和过程组成的网络。最近的研究报告指出,标准莱尼亚中的非柏拉图行为可能取决于剪切函数,而莱尼亚滑翔机很可能不会出现非柏拉图不稳定性。在这项工作中,我展示了一个 ALenia 滑翔机的例子,它的自造血能力依赖于一定的模拟粗糙度:当模拟的空间或时间分辨率太细时,滑翔机不再保持其形态或动力学。我还展示了渐近 Lenia 滑翔机的不稳定性图,以及其他与 CA 框架无关的不稳定性图,这些图显示了细小边界细节的分形保留,直至浮点精度的极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Platonic Autopoiesis of a Cellular Automaton Glider in Asymptotic Lenia
Like Life, Lenia CA support a range of patterns that move, interact with their environment, and/or are modified by said interactions. These patterns maintain a cohesive, self-organizing morphology, i.e. they exemplify autopoiesis, the self-organization principle of a network of components and processes maintaining themselves. Recent work implementing Asymptotic Lenia as a reaction-diffusion system reported that non-Platonic behavior in standard Lenia may depend on the clipping function, and that ALenia gliders are likely not subject to non-Platonic instability. In this work I show an example of a glider in ALenia that depends on a certain simulation coarseness for autopoietic competence: when simulated with too fine spatial or temporal resolution the glider no longer maintains its morphology or dynamics. I also show that instability maps of the asymptotic Lenia glider, and others in different CA framworks, show fractal retention of fine boundary detail down to the limit of floating point precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信