\textsc{Perm}:多风格三维发型建模的参数表示法

Chengan He, Xin Sun, Zhixin Shu, Fujun Luan, Sören Pirk, Jorge Alejandro Amador Herrera, Dominik L. Michels, Tuanfeng Y. Wang, Meng Zhang, Holly Rushmeier, Yi Zhou
{"title":"\\textsc{Perm}:多风格三维发型建模的参数表示法","authors":"Chengan He, Xin Sun, Zhixin Shu, Fujun Luan, Sören Pirk, Jorge Alejandro Amador Herrera, Dominik L. Michels, Tuanfeng Y. Wang, Meng Zhang, Holly Rushmeier, Yi Zhou","doi":"arxiv-2407.19451","DOIUrl":null,"url":null,"abstract":"We present \\textsc{Perm}, a learned parametric model of human 3D hair\ndesigned to facilitate various hair-related applications. Unlike previous work\nthat jointly models the global hair shape and local strand details, we propose\nto disentangle them using a PCA-based strand representation in the frequency\ndomain, thereby allowing more precise editing and output control. Specifically,\nwe leverage our strand representation to fit and decompose hair geometry\ntextures into low- to high-frequency hair structures. These decomposed textures\nare later parameterized with different generative models, emulating common\nstages in the hair modeling process. We conduct extensive experiments to\nvalidate the architecture design of \\textsc{Perm}, and finally deploy the\ntrained model as a generic prior to solve task-agnostic problems, further\nshowcasing its flexibility and superiority in tasks such as 3D hair\nparameterization, hairstyle interpolation, single-view hair reconstruction, and\nhair-conditioned image generation. Our code and data will be available at:\n\\url{https://github.com/c-he/perm}.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"\\\\textsc{Perm}: A Parametric Representation for Multi-Style 3D Hair Modeling\",\"authors\":\"Chengan He, Xin Sun, Zhixin Shu, Fujun Luan, Sören Pirk, Jorge Alejandro Amador Herrera, Dominik L. Michels, Tuanfeng Y. Wang, Meng Zhang, Holly Rushmeier, Yi Zhou\",\"doi\":\"arxiv-2407.19451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present \\\\textsc{Perm}, a learned parametric model of human 3D hair\\ndesigned to facilitate various hair-related applications. Unlike previous work\\nthat jointly models the global hair shape and local strand details, we propose\\nto disentangle them using a PCA-based strand representation in the frequency\\ndomain, thereby allowing more precise editing and output control. Specifically,\\nwe leverage our strand representation to fit and decompose hair geometry\\ntextures into low- to high-frequency hair structures. These decomposed textures\\nare later parameterized with different generative models, emulating common\\nstages in the hair modeling process. We conduct extensive experiments to\\nvalidate the architecture design of \\\\textsc{Perm}, and finally deploy the\\ntrained model as a generic prior to solve task-agnostic problems, further\\nshowcasing its flexibility and superiority in tasks such as 3D hair\\nparameterization, hairstyle interpolation, single-view hair reconstruction, and\\nhair-conditioned image generation. Our code and data will be available at:\\n\\\\url{https://github.com/c-he/perm}.\",\"PeriodicalId\":501174,\"journal\":{\"name\":\"arXiv - CS - Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.19451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了人类三维头发的学习参数模型 \textsc{Perm},该模型旨在促进各种与头发相关的应用。与以往联合建模全局发丝形状和局部发丝细节的工作不同,我们建议使用基于 PCA 的频域发丝表示法将它们分开,从而实现更精确的编辑和输出控制。具体来说,我们利用头发丝表示法将头发几何纹理拟合并分解为低频到高频的头发结构。这些分解后的纹理随后用不同的生成模型进行参数化,模拟头发建模过程中的常见阶段。我们进行了大量实验来验证 \textsc{Perm} 的架构设计,最后将训练好的模型作为通用先验模型来解决与任务无关的问题,进一步展示了它在三维毛发参数化、发型插值、单视角毛发重建和毛发条件图像生成等任务中的灵活性和优越性。我们的代码和数据将发布在:url{https://github.com/c-he/perm}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
\textsc{Perm}: A Parametric Representation for Multi-Style 3D Hair Modeling
We present \textsc{Perm}, a learned parametric model of human 3D hair designed to facilitate various hair-related applications. Unlike previous work that jointly models the global hair shape and local strand details, we propose to disentangle them using a PCA-based strand representation in the frequency domain, thereby allowing more precise editing and output control. Specifically, we leverage our strand representation to fit and decompose hair geometry textures into low- to high-frequency hair structures. These decomposed textures are later parameterized with different generative models, emulating common stages in the hair modeling process. We conduct extensive experiments to validate the architecture design of \textsc{Perm}, and finally deploy the trained model as a generic prior to solve task-agnostic problems, further showcasing its flexibility and superiority in tasks such as 3D hair parameterization, hairstyle interpolation, single-view hair reconstruction, and hair-conditioned image generation. Our code and data will be available at: \url{https://github.com/c-he/perm}.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信