基于规范最小化的凸向量优化算法的收敛性分析

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Çağin Ararat, Firdevs Ulus, Muhammad Umer
{"title":"基于规范最小化的凸向量优化算法的收敛性分析","authors":"Çağin Ararat, Firdevs Ulus, Muhammad Umer","doi":"10.1137/23m1574580","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 3, Page 2700-2728, September 2024. <br/> Abstract. In this work, we propose an outer approximation algorithm for solving bounded convex vector optimization problems (CVOPs). The scalarization model solved iteratively within the algorithm is a modification of the norm-minimizing scalarization proposed in [Ç. Ararat, F. Ulus, and M. Umer, J. Optim. Theory Appl., 194 (2022), pp. 681–712]. For a predetermined tolerance [math], we prove that the algorithm terminates after finitely many iterations, and it returns a polyhedral outer approximation to the upper image of the CVOP such that the Hausdorff distance between the two is less than [math]. We show that for an arbitrary norm used in the scalarization models, the approximation error after [math] iterations decreases by the order of [math], where [math] is the dimension of the objective space. An improved convergence rate of [math] is proved for the special case of using the Euclidean norm.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence Analysis of a Norm Minimization-Based Convex Vector Optimization Algorithm\",\"authors\":\"Çağin Ararat, Firdevs Ulus, Muhammad Umer\",\"doi\":\"10.1137/23m1574580\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Optimization, Volume 34, Issue 3, Page 2700-2728, September 2024. <br/> Abstract. In this work, we propose an outer approximation algorithm for solving bounded convex vector optimization problems (CVOPs). The scalarization model solved iteratively within the algorithm is a modification of the norm-minimizing scalarization proposed in [Ç. Ararat, F. Ulus, and M. Umer, J. Optim. Theory Appl., 194 (2022), pp. 681–712]. For a predetermined tolerance [math], we prove that the algorithm terminates after finitely many iterations, and it returns a polyhedral outer approximation to the upper image of the CVOP such that the Hausdorff distance between the two is less than [math]. We show that for an arbitrary norm used in the scalarization models, the approximation error after [math] iterations decreases by the order of [math], where [math] is the dimension of the objective space. An improved convergence rate of [math] is proved for the special case of using the Euclidean norm.\",\"PeriodicalId\":49529,\"journal\":{\"name\":\"SIAM Journal on Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1574580\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1574580","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 优化期刊》,第 34 卷第 3 期,第 2700-2728 页,2024 年 9 月。 摘要在这项工作中,我们提出了一种求解有界凸向量优化问题(CVOPs)的外近似算法。算法中迭代求解的标量化模型是对[Ç. Ararat, F. Ulus, Ç...]中提出的规范最小化标量化的修正。Ararat, F. Ulus, and M. Umer, J. Optim.理论应用》,194 (2022),第 681-712 页]。对于预定公差 [math],我们证明该算法在有限次迭代后终止,并返回 CVOP 上像的多面体外近似,且两者之间的豪斯多夫距离小于 [math]。我们证明,对于标量化模型中使用的任意规范,[math] 次迭代后的近似误差会以 [math] 的数量级减小,其中 [math] 是目标空间的维度。对于使用欧氏规范的特殊情况,我们证明了[math]的收敛率有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence Analysis of a Norm Minimization-Based Convex Vector Optimization Algorithm
SIAM Journal on Optimization, Volume 34, Issue 3, Page 2700-2728, September 2024.
Abstract. In this work, we propose an outer approximation algorithm for solving bounded convex vector optimization problems (CVOPs). The scalarization model solved iteratively within the algorithm is a modification of the norm-minimizing scalarization proposed in [Ç. Ararat, F. Ulus, and M. Umer, J. Optim. Theory Appl., 194 (2022), pp. 681–712]. For a predetermined tolerance [math], we prove that the algorithm terminates after finitely many iterations, and it returns a polyhedral outer approximation to the upper image of the CVOP such that the Hausdorff distance between the two is less than [math]. We show that for an arbitrary norm used in the scalarization models, the approximation error after [math] iterations decreases by the order of [math], where [math] is the dimension of the objective space. An improved convergence rate of [math] is proved for the special case of using the Euclidean norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
SIAM Journal on Optimization
SIAM Journal on Optimization 数学-应用数学
CiteScore
5.30
自引率
9.70%
发文量
101
审稿时长
6-12 weeks
期刊介绍: The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信