{"title":"(2+1)-dimensional Nizhnik-Novikov-Veselov-type 系统的新交互解和聚变现象","authors":"Guo-Hua Wang, Ji Lin, Shou-Feng Shen","doi":"10.1088/1572-9494/ad595c","DOIUrl":null,"url":null,"abstract":"By means of the multilinear variable separation (MLVS) approach, new interaction solutions with low-dimensional arbitrary functions of the (2+1)-dimensional Nizhnik–Novikov–Veselov-type system are constructed. Four-dromion structure, ring-parabolic soliton structure and corresponding fusion phenomena for the physical quantity <inline-formula>\n<tex-math>\n<?CDATA ${U}=\\lambda {(\\mathrm{ln}f)}_{{xy}}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi mathvariant=\"italic\">U</mml:mi><mml:mo>=</mml:mo><mml:mi>λ</mml:mi><mml:msub><mml:mrow><mml:mo stretchy=\"false\">(</mml:mo><mml:mi>ln</mml:mi><mml:mi>f</mml:mi><mml:mo stretchy=\"false\">)</mml:mo></mml:mrow><mml:mrow><mml:mi mathvariant=\"italic\">xy</mml:mi></mml:mrow></mml:msub></mml:math>\n<inline-graphic xlink:href=\"ctpad595cieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> are revealed for the first time. This MLVS approach can also be used to deal with the (2+1)-dimensional Sasa–Satsuma system.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"37 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New interaction solutions of the (2+1)-dimensional Nizhnik–Novikov–Veselov-type system and fusion phenomena\",\"authors\":\"Guo-Hua Wang, Ji Lin, Shou-Feng Shen\",\"doi\":\"10.1088/1572-9494/ad595c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By means of the multilinear variable separation (MLVS) approach, new interaction solutions with low-dimensional arbitrary functions of the (2+1)-dimensional Nizhnik–Novikov–Veselov-type system are constructed. Four-dromion structure, ring-parabolic soliton structure and corresponding fusion phenomena for the physical quantity <inline-formula>\\n<tex-math>\\n<?CDATA ${U}=\\\\lambda {(\\\\mathrm{ln}f)}_{{xy}}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi mathvariant=\\\"italic\\\">U</mml:mi><mml:mo>=</mml:mo><mml:mi>λ</mml:mi><mml:msub><mml:mrow><mml:mo stretchy=\\\"false\\\">(</mml:mo><mml:mi>ln</mml:mi><mml:mi>f</mml:mi><mml:mo stretchy=\\\"false\\\">)</mml:mo></mml:mrow><mml:mrow><mml:mi mathvariant=\\\"italic\\\">xy</mml:mi></mml:mrow></mml:msub></mml:math>\\n<inline-graphic xlink:href=\\\"ctpad595cieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> are revealed for the first time. This MLVS approach can also be used to deal with the (2+1)-dimensional Sasa–Satsuma system.\",\"PeriodicalId\":10641,\"journal\":{\"name\":\"Communications in Theoretical Physics\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1572-9494/ad595c\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad595c","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
New interaction solutions of the (2+1)-dimensional Nizhnik–Novikov–Veselov-type system and fusion phenomena
By means of the multilinear variable separation (MLVS) approach, new interaction solutions with low-dimensional arbitrary functions of the (2+1)-dimensional Nizhnik–Novikov–Veselov-type system are constructed. Four-dromion structure, ring-parabolic soliton structure and corresponding fusion phenomena for the physical quantity U=λ(lnf)xy are revealed for the first time. This MLVS approach can also be used to deal with the (2+1)-dimensional Sasa–Satsuma system.
期刊介绍:
Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of:
mathematical physics
quantum physics and quantum information
particle physics and quantum field theory
nuclear physics
gravitation theory, astrophysics and cosmology
atomic, molecular, optics (AMO) and plasma physics, chemical physics
statistical physics, soft matter and biophysics
condensed matter theory
others
Certain new interdisciplinary subjects are also incorporated.