通过求解薛定谔方程得出可能的 KK¯* 和 DD¯* 束缚态和共振态

IF 2.4 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Bao-Xi Sun, Qin-Qin Cao, Ying-Tai Sun
{"title":"通过求解薛定谔方程得出可能的 KK¯* 和 DD¯* 束缚态和共振态","authors":"Bao-Xi Sun, Qin-Qin Cao, Ying-Tai Sun","doi":"10.1088/1572-9494/ad51df","DOIUrl":null,"url":null,"abstract":"The Schrodinger equation with a Yukawa type of potential is solved analytically. When different boundary conditions are taken into account, a series of solutions are indicated as a Bessel function, the first kind of Hankel function and the second kind of Hankel function, respectively. Subsequently, the scattering processes of <inline-formula>\n<tex-math>\n<?CDATA $K{\\bar{K}}^{* }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>K</mml:mi><mml:msup><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ctpad51dfieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and <inline-formula>\n<tex-math>\n<?CDATA $D{\\bar{D}}^{* }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ctpad51dfieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> are investigated. In the <inline-formula>\n<tex-math>\n<?CDATA $K{\\bar{K}}^{* }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>K</mml:mi><mml:msup><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ctpad51dfieqn7.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> sector, the <italic toggle=\"yes\">f</italic>\n<sub>1</sub>(1285) particle is treated as a <inline-formula>\n<tex-math>\n<?CDATA $K{\\bar{K}}^{* }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>K</mml:mi><mml:msup><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ctpad51dfieqn8.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> bound state, therefore, the coupling constant in the <inline-formula>\n<tex-math>\n<?CDATA $K{\\bar{K}}^{* }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>K</mml:mi><mml:msup><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ctpad51dfieqn9.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> Yukawa potential can be fixed according to the binding energy of the <italic toggle=\"yes\">f</italic>\n<sub>1</sub>(1285) particle. Consequently, a <inline-formula>\n<tex-math>\n<?CDATA $K{\\bar{K}}^{* }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>K</mml:mi><mml:msup><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ctpad51dfieqn10.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> resonance state is generated by solving the Schrodinger equation with the outgoing wave condition, which lies at 1417 − i18 MeV on the complex energy plane. It is reasonable to assume that the <inline-formula>\n<tex-math>\n<?CDATA $K{\\bar{K}}^{* }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>K</mml:mi><mml:msup><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ctpad51dfieqn11.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> resonance state at 1417 − i18 MeV might correspond to the <italic toggle=\"yes\">f</italic>\n<sub>1</sub>(1420) particle in the review of the Particle Data Group. In the <inline-formula>\n<tex-math>\n<?CDATA $D{\\bar{D}}^{* }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ctpad51dfieqn12.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> sector, since the <italic toggle=\"yes\">X</italic>(3872) particle is almost located at the <inline-formula>\n<tex-math>\n<?CDATA $D{\\bar{D}}^{* }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ctpad51dfieqn13.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> threshold, its binding energy is approximately equal to zero. Therefore, the coupling constant in the <inline-formula>\n<tex-math>\n<?CDATA $D{\\bar{D}}^{* }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ctpad51dfieqn14.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> Yukawa potential is determined, which is related to the first zero point of the zero-order Bessel function. Similarly to the <inline-formula>\n<tex-math>\n<?CDATA $K{\\bar{K}}^{* }$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>K</mml:mi><mml:msup><mml:mrow><mml:mover accent=\"true\"><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\n<inline-graphic xlink:href=\"ctpad51dfieqn15.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> case, four resonance states are produced as solutions of the Schrodinger equation with the outgoing wave condition. It is assumed that the resonance states at 3885 − i1 MeV, 4029 − i108 MeV, 4328 − i191 MeV and 4772 − <italic toggle=\"yes\">i</italic>267 MeV might be associated with the <italic toggle=\"yes\">Zc</italic>(3900), the <italic toggle=\"yes\">X</italic>(3940), the <italic toggle=\"yes\">χ</italic>\n<sub>\n<italic toggle=\"yes\">c</italic>1</sub>(4274) and <italic toggle=\"yes\">χ</italic>\n<sub>\n<italic toggle=\"yes\">c</italic>1</sub>(4685) particles, respectively. It is noted that all solutions are isospin degenerate.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"174 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The possible KK¯* and DD¯* bound and resonance states by solving the Schrodinger equation\",\"authors\":\"Bao-Xi Sun, Qin-Qin Cao, Ying-Tai Sun\",\"doi\":\"10.1088/1572-9494/ad51df\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Schrodinger equation with a Yukawa type of potential is solved analytically. When different boundary conditions are taken into account, a series of solutions are indicated as a Bessel function, the first kind of Hankel function and the second kind of Hankel function, respectively. Subsequently, the scattering processes of <inline-formula>\\n<tex-math>\\n<?CDATA $K{\\\\bar{K}}^{* }$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>K</mml:mi><mml:msup><mml:mrow><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\\n<inline-graphic xlink:href=\\\"ctpad51dfieqn5.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> and <inline-formula>\\n<tex-math>\\n<?CDATA $D{\\\\bar{D}}^{* }$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\\n<inline-graphic xlink:href=\\\"ctpad51dfieqn6.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> are investigated. In the <inline-formula>\\n<tex-math>\\n<?CDATA $K{\\\\bar{K}}^{* }$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>K</mml:mi><mml:msup><mml:mrow><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\\n<inline-graphic xlink:href=\\\"ctpad51dfieqn7.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> sector, the <italic toggle=\\\"yes\\\">f</italic>\\n<sub>1</sub>(1285) particle is treated as a <inline-formula>\\n<tex-math>\\n<?CDATA $K{\\\\bar{K}}^{* }$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>K</mml:mi><mml:msup><mml:mrow><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\\n<inline-graphic xlink:href=\\\"ctpad51dfieqn8.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> bound state, therefore, the coupling constant in the <inline-formula>\\n<tex-math>\\n<?CDATA $K{\\\\bar{K}}^{* }$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>K</mml:mi><mml:msup><mml:mrow><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\\n<inline-graphic xlink:href=\\\"ctpad51dfieqn9.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> Yukawa potential can be fixed according to the binding energy of the <italic toggle=\\\"yes\\\">f</italic>\\n<sub>1</sub>(1285) particle. Consequently, a <inline-formula>\\n<tex-math>\\n<?CDATA $K{\\\\bar{K}}^{* }$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>K</mml:mi><mml:msup><mml:mrow><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\\n<inline-graphic xlink:href=\\\"ctpad51dfieqn10.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> resonance state is generated by solving the Schrodinger equation with the outgoing wave condition, which lies at 1417 − i18 MeV on the complex energy plane. It is reasonable to assume that the <inline-formula>\\n<tex-math>\\n<?CDATA $K{\\\\bar{K}}^{* }$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>K</mml:mi><mml:msup><mml:mrow><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\\n<inline-graphic xlink:href=\\\"ctpad51dfieqn11.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> resonance state at 1417 − i18 MeV might correspond to the <italic toggle=\\\"yes\\\">f</italic>\\n<sub>1</sub>(1420) particle in the review of the Particle Data Group. In the <inline-formula>\\n<tex-math>\\n<?CDATA $D{\\\\bar{D}}^{* }$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\\n<inline-graphic xlink:href=\\\"ctpad51dfieqn12.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> sector, since the <italic toggle=\\\"yes\\\">X</italic>(3872) particle is almost located at the <inline-formula>\\n<tex-math>\\n<?CDATA $D{\\\\bar{D}}^{* }$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\\n<inline-graphic xlink:href=\\\"ctpad51dfieqn13.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> threshold, its binding energy is approximately equal to zero. Therefore, the coupling constant in the <inline-formula>\\n<tex-math>\\n<?CDATA $D{\\\\bar{D}}^{* }$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>D</mml:mi><mml:msup><mml:mrow><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>D</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\\n<inline-graphic xlink:href=\\\"ctpad51dfieqn14.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> Yukawa potential is determined, which is related to the first zero point of the zero-order Bessel function. Similarly to the <inline-formula>\\n<tex-math>\\n<?CDATA $K{\\\\bar{K}}^{* }$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>K</mml:mi><mml:msup><mml:mrow><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:mrow><mml:mrow><mml:mo>*</mml:mo></mml:mrow></mml:msup></mml:math>\\n<inline-graphic xlink:href=\\\"ctpad51dfieqn15.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> case, four resonance states are produced as solutions of the Schrodinger equation with the outgoing wave condition. It is assumed that the resonance states at 3885 − i1 MeV, 4029 − i108 MeV, 4328 − i191 MeV and 4772 − <italic toggle=\\\"yes\\\">i</italic>267 MeV might be associated with the <italic toggle=\\\"yes\\\">Zc</italic>(3900), the <italic toggle=\\\"yes\\\">X</italic>(3940), the <italic toggle=\\\"yes\\\">χ</italic>\\n<sub>\\n<italic toggle=\\\"yes\\\">c</italic>1</sub>(4274) and <italic toggle=\\\"yes\\\">χ</italic>\\n<sub>\\n<italic toggle=\\\"yes\\\">c</italic>1</sub>(4685) particles, respectively. It is noted that all solutions are isospin degenerate.\",\"PeriodicalId\":10641,\"journal\":{\"name\":\"Communications in Theoretical Physics\",\"volume\":\"174 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1572-9494/ad51df\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad51df","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对具有尤卡瓦势的薛定谔方程进行了解析求解。当考虑到不同的边界条件时,一系列解分别表示为贝塞尔函数、第一类汉克尔函数和第二类汉克尔函数。随后,研究了 KK¯* 和 DD¯* 的散射过程。在KK¯*部门,f1(1285)粒子被视为KK¯*束缚态,因此KK¯*尤卡娃势中的耦合常数可以根据f1(1285)粒子的束缚能来固定。因此,通过求解具有出射波条件的薛定谔方程,就会产生一个 KK¯* 共振态,它位于复能面上的 1417 - i18 MeV 处。我们有理由认为,1417 - i18 MeV 处的 KK¯* 共振态可能对应于粒子数据组审查中的 f1(1420) 粒子。在DD¯*扇区,由于X(3872)粒子几乎位于DD¯*阈值,其结合能近似等于零。因此,DD¯* 尤卡娃势中的耦合常数是确定的,它与零阶贝塞尔函数的第一个零点有关。与 KK¯* 的情况类似,四个共振态是以出波条件作为薛定谔方程的解产生的。假设在 3885 - i1 MeV、4029 - i108 MeV、4328 - i191 MeV 和 4772 - i267 MeV 处的共振态可能分别与 Zc(3900)、X(3940)、χc1(4274)和 χc1(4685)粒子有关。注意到所有的解都是等空素退化的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The possible KK¯* and DD¯* bound and resonance states by solving the Schrodinger equation
The Schrodinger equation with a Yukawa type of potential is solved analytically. When different boundary conditions are taken into account, a series of solutions are indicated as a Bessel function, the first kind of Hankel function and the second kind of Hankel function, respectively. Subsequently, the scattering processes of KK¯* and DD¯* are investigated. In the KK¯* sector, the f 1(1285) particle is treated as a KK¯* bound state, therefore, the coupling constant in the KK¯* Yukawa potential can be fixed according to the binding energy of the f 1(1285) particle. Consequently, a KK¯* resonance state is generated by solving the Schrodinger equation with the outgoing wave condition, which lies at 1417 − i18 MeV on the complex energy plane. It is reasonable to assume that the KK¯* resonance state at 1417 − i18 MeV might correspond to the f 1(1420) particle in the review of the Particle Data Group. In the DD¯* sector, since the X(3872) particle is almost located at the DD¯* threshold, its binding energy is approximately equal to zero. Therefore, the coupling constant in the DD¯* Yukawa potential is determined, which is related to the first zero point of the zero-order Bessel function. Similarly to the KK¯* case, four resonance states are produced as solutions of the Schrodinger equation with the outgoing wave condition. It is assumed that the resonance states at 3885 − i1 MeV, 4029 − i108 MeV, 4328 − i191 MeV and 4772 − i267 MeV might be associated with the Zc(3900), the X(3940), the χ c1(4274) and χ c1(4685) particles, respectively. It is noted that all solutions are isospin degenerate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Theoretical Physics
Communications in Theoretical Physics 物理-物理:综合
CiteScore
5.20
自引率
3.20%
发文量
6110
审稿时长
4.2 months
期刊介绍: Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of: mathematical physics quantum physics and quantum information particle physics and quantum field theory nuclear physics gravitation theory, astrophysics and cosmology atomic, molecular, optics (AMO) and plasma physics, chemical physics statistical physics, soft matter and biophysics condensed matter theory others Certain new interdisciplinary subjects are also incorporated.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信