可变形三维形状扩散模型

Dengsheng Chen, Jie Hu, Xiaoming Wei, Enhua Wu
{"title":"可变形三维形状扩散模型","authors":"Dengsheng Chen, Jie Hu, Xiaoming Wei, Enhua Wu","doi":"arxiv-2407.21428","DOIUrl":null,"url":null,"abstract":"The Gaussian diffusion model, initially designed for image generation, has\nrecently been adapted for 3D point cloud generation. However, these adaptations\nhave not fully considered the intrinsic geometric characteristics of 3D shapes,\nthereby constraining the diffusion model's potential for 3D shape manipulation.\nTo address this limitation, we introduce a novel deformable 3D shape diffusion\nmodel that facilitates comprehensive 3D shape manipulation, including point\ncloud generation, mesh deformation, and facial animation. Our approach\ninnovatively incorporates a differential deformation kernel, which deconstructs\nthe generation of geometric structures into successive non-rigid deformation\nstages. By leveraging a probabilistic diffusion model to simulate this\nstep-by-step process, our method provides a versatile and efficient solution\nfor a wide range of applications, spanning from graphics rendering to facial\nexpression animation. Empirical evidence highlights the effectiveness of our\napproach, demonstrating state-of-the-art performance in point cloud generation\nand competitive results in mesh deformation. Additionally, extensive visual\ndemonstrations reveal the significant potential of our approach for practical\napplications. Our method presents a unique pathway for advancing 3D shape\nmanipulation and unlocking new opportunities in the realm of virtual reality.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformable 3D Shape Diffusion Model\",\"authors\":\"Dengsheng Chen, Jie Hu, Xiaoming Wei, Enhua Wu\",\"doi\":\"arxiv-2407.21428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Gaussian diffusion model, initially designed for image generation, has\\nrecently been adapted for 3D point cloud generation. However, these adaptations\\nhave not fully considered the intrinsic geometric characteristics of 3D shapes,\\nthereby constraining the diffusion model's potential for 3D shape manipulation.\\nTo address this limitation, we introduce a novel deformable 3D shape diffusion\\nmodel that facilitates comprehensive 3D shape manipulation, including point\\ncloud generation, mesh deformation, and facial animation. Our approach\\ninnovatively incorporates a differential deformation kernel, which deconstructs\\nthe generation of geometric structures into successive non-rigid deformation\\nstages. By leveraging a probabilistic diffusion model to simulate this\\nstep-by-step process, our method provides a versatile and efficient solution\\nfor a wide range of applications, spanning from graphics rendering to facial\\nexpression animation. Empirical evidence highlights the effectiveness of our\\napproach, demonstrating state-of-the-art performance in point cloud generation\\nand competitive results in mesh deformation. Additionally, extensive visual\\ndemonstrations reveal the significant potential of our approach for practical\\napplications. Our method presents a unique pathway for advancing 3D shape\\nmanipulation and unlocking new opportunities in the realm of virtual reality.\",\"PeriodicalId\":501174,\"journal\":{\"name\":\"arXiv - CS - Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高斯扩散模型最初是为生成图像而设计的,最近已被用于生成三维点云。为了解决这一局限性,我们引入了一种新型的可变形三维形状扩散模型,该模型有助于进行全面的三维形状操作,包括点云生成、网格变形和面部动画。我们的方法创新性地加入了微分变形内核,将几何结构的生成分解为连续的非刚性变形阶段。通过利用概率扩散模型模拟这一逐级过程,我们的方法为从图形渲染到面部表情动画等广泛应用提供了多功能、高效的解决方案。经验证据凸显了我们方法的有效性,在点云生成方面展示了最先进的性能,在网格变形方面也取得了具有竞争力的结果。此外,大量的可视化演示揭示了我们的方法在实际应用中的巨大潜力。我们的方法为推进三维形状操纵和开启虚拟现实领域的新机遇提供了一条独特的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deformable 3D Shape Diffusion Model
The Gaussian diffusion model, initially designed for image generation, has recently been adapted for 3D point cloud generation. However, these adaptations have not fully considered the intrinsic geometric characteristics of 3D shapes, thereby constraining the diffusion model's potential for 3D shape manipulation. To address this limitation, we introduce a novel deformable 3D shape diffusion model that facilitates comprehensive 3D shape manipulation, including point cloud generation, mesh deformation, and facial animation. Our approach innovatively incorporates a differential deformation kernel, which deconstructs the generation of geometric structures into successive non-rigid deformation stages. By leveraging a probabilistic diffusion model to simulate this step-by-step process, our method provides a versatile and efficient solution for a wide range of applications, spanning from graphics rendering to facial expression animation. Empirical evidence highlights the effectiveness of our approach, demonstrating state-of-the-art performance in point cloud generation and competitive results in mesh deformation. Additionally, extensive visual demonstrations reveal the significant potential of our approach for practical applications. Our method presents a unique pathway for advancing 3D shape manipulation and unlocking new opportunities in the realm of virtual reality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信