高维度度量图高斯自由场临界水平集的单臂指数

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
Zhenhao Cai, Jian Ding
{"title":"高维度度量图高斯自由场临界水平集的单臂指数","authors":"Zhenhao Cai, Jian Ding","doi":"10.1007/s00440-024-01295-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the critical level-set of Gaussian free field (GFF) on the metric graph <span>\\(\\widetilde{{\\mathbb {Z}}}^d,d&gt;6\\)</span>. We prove that the one-arm probability (i.e. the probability of the event that the origin is connected to the boundary of the box <i>B</i>(<i>N</i>)) is proportional to <span>\\(N^{-2}\\)</span>, where <i>B</i>(<i>N</i>) is centered at the origin and has side length <span>\\(2\\lfloor N \\rfloor \\)</span>. Our proof is highly inspired by Kozma and Nachmias (J Am Math Soc 24(2):375–409, 2011) which proves the analogous result for the critical bond percolation for <span>\\(d\\ge 11\\)</span>, and by Werner (in: Séminaire de Probabilités XLVIII, Springer, Berlin, 2016) which conjectures the similarity between the GFF level-set and the bond percolation in general and proves this connection for various geometric aspects.\n</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":"48 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"One-arm exponent of critical level-set for metric graph Gaussian free field in high dimensions\",\"authors\":\"Zhenhao Cai, Jian Ding\",\"doi\":\"10.1007/s00440-024-01295-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the critical level-set of Gaussian free field (GFF) on the metric graph <span>\\\\(\\\\widetilde{{\\\\mathbb {Z}}}^d,d&gt;6\\\\)</span>. We prove that the one-arm probability (i.e. the probability of the event that the origin is connected to the boundary of the box <i>B</i>(<i>N</i>)) is proportional to <span>\\\\(N^{-2}\\\\)</span>, where <i>B</i>(<i>N</i>) is centered at the origin and has side length <span>\\\\(2\\\\lfloor N \\\\rfloor \\\\)</span>. Our proof is highly inspired by Kozma and Nachmias (J Am Math Soc 24(2):375–409, 2011) which proves the analogous result for the critical bond percolation for <span>\\\\(d\\\\ge 11\\\\)</span>, and by Werner (in: Séminaire de Probabilités XLVIII, Springer, Berlin, 2016) which conjectures the similarity between the GFF level-set and the bond percolation in general and proves this connection for various geometric aspects.\\n</p>\",\"PeriodicalId\":20527,\"journal\":{\"name\":\"Probability Theory and Related Fields\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Theory and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00440-024-01295-z\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-024-01295-z","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了度量图 \(\widetilde{{\mathbb {Z}}^d,d>6\) 上高斯自由场(GFF)的临界水平集。)我们证明了单臂概率(即原点与盒 B(N) 边界相连的概率)与 \(N^{-2}\) 成正比,其中 B(N) 以原点为中心,边长为 \(2\lfloor N\rfloor \)。我们的证明受到了 Kozma 和 Nachmias(J Am Math Soc 24(2):375-409,2011)和 Werner(in: Séminaire de Probabilités XLVIII, Springer, Berlin, 2016)的极大启发,前者证明了 GFF 水平集与一般债券渗流之间的相似性,并从各种几何方面证明了这种联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

One-arm exponent of critical level-set for metric graph Gaussian free field in high dimensions

One-arm exponent of critical level-set for metric graph Gaussian free field in high dimensions

In this paper, we study the critical level-set of Gaussian free field (GFF) on the metric graph \(\widetilde{{\mathbb {Z}}}^d,d>6\). We prove that the one-arm probability (i.e. the probability of the event that the origin is connected to the boundary of the box B(N)) is proportional to \(N^{-2}\), where B(N) is centered at the origin and has side length \(2\lfloor N \rfloor \). Our proof is highly inspired by Kozma and Nachmias (J Am Math Soc 24(2):375–409, 2011) which proves the analogous result for the critical bond percolation for \(d\ge 11\), and by Werner (in: Séminaire de Probabilités XLVIII, Springer, Berlin, 2016) which conjectures the similarity between the GFF level-set and the bond percolation in general and proves this connection for various geometric aspects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信