小平维度与山边问题 II

Pub Date : 2024-07-29 DOI:10.4310/cag.2023.v31.n10.a4
Albanese,Michael, LeBrun,Claude
{"title":"小平维度与山边问题 II","authors":"Albanese,Michael, LeBrun,Claude","doi":"10.4310/cag.2023.v31.n10.a4","DOIUrl":null,"url":null,"abstract":"For compact complex surfaces $(M^{4}, J)$ of Kähler type, it was previously shown [30] that the sign of the Yamabe invariant $\\mathscr{Y}(M)$ only depends on the Kodaira dimension $\\text{Kod} (M, J)$. In this paper, we prove that this pattern in fact extends to all compact complex surfaces except those of class VII. In the process, we also reprove a result from [2] that explains why the exclusion of class VII is essential here.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kodaira dimension & the Yamabe problem, II\",\"authors\":\"Albanese,Michael, LeBrun,Claude\",\"doi\":\"10.4310/cag.2023.v31.n10.a4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For compact complex surfaces $(M^{4}, J)$ of Kähler type, it was previously shown [30] that the sign of the Yamabe invariant $\\\\mathscr{Y}(M)$ only depends on the Kodaira dimension $\\\\text{Kod} (M, J)$. In this paper, we prove that this pattern in fact extends to all compact complex surfaces except those of class VII. In the process, we also reprove a result from [2] that explains why the exclusion of class VII is essential here.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2023.v31.n10.a4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n10.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于凯勒类型的紧凑复曲面$(M^{4}, J)$,之前已经证明[30]山边不变量$m\mathscr{Y}(M)$的符号只取决于柯达伊拉维度$\text{Kod} (M, J)$。在本文中,我们证明了这一模式事实上扩展到了除第 VII 类之外的所有紧凑复曲面。在此过程中,我们还重新证明了[2]中的一个结果,它解释了为什么这里必须排除第 VII 类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Kodaira dimension & the Yamabe problem, II
For compact complex surfaces $(M^{4}, J)$ of Kähler type, it was previously shown [30] that the sign of the Yamabe invariant $\mathscr{Y}(M)$ only depends on the Kodaira dimension $\text{Kod} (M, J)$. In this paper, we prove that this pattern in fact extends to all compact complex surfaces except those of class VII. In the process, we also reprove a result from [2] that explains why the exclusion of class VII is essential here.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信