秩一子漫游的几何考奇问题

IF 0.7 4区 数学 Q2 MATHEMATICS
Raffaelli,Matteo
{"title":"秩一子漫游的几何考奇问题","authors":"Raffaelli,Matteo","doi":"10.4310/cag.2023.v31.n10.a6","DOIUrl":null,"url":null,"abstract":"Given a smooth distribution $\\mathscr{D}$ of $m$-dimensional planes along a smooth regular curve $\\gamma $ in $\\mathbb{R}^{m+n}$, we consider the following problem: to find an $m$-dimensional rank-one submanifold of $\\mathbb{R}^{m+n}$, that is, an $(m-1)$-ruled submanifold with constant tangent space along the rulings, such that its tangent bundle along $\\gamma $ coincides with $\\mathscr{D}$. In particular, we give sufficient conditions for the local well-posedness of the problem, together with a parametric description of the solution.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"64 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The geometric Cauchy problem for rank-one submanifolds\",\"authors\":\"Raffaelli,Matteo\",\"doi\":\"10.4310/cag.2023.v31.n10.a6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a smooth distribution $\\\\mathscr{D}$ of $m$-dimensional planes along a smooth regular curve $\\\\gamma $ in $\\\\mathbb{R}^{m+n}$, we consider the following problem: to find an $m$-dimensional rank-one submanifold of $\\\\mathbb{R}^{m+n}$, that is, an $(m-1)$-ruled submanifold with constant tangent space along the rulings, such that its tangent bundle along $\\\\gamma $ coincides with $\\\\mathscr{D}$. In particular, we give sufficient conditions for the local well-posedness of the problem, together with a parametric description of the solution.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2023.v31.n10.a6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n10.a6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定$m$维平面沿着$\mathbb{R}^{m+n}$中光滑规则曲线$\gamma$的光滑分布$\mathscr{D}$,我们考虑以下问题:找到$\mathbb{R}^{m+n}$的一个$m$维秩一子漫游,即一个沿秩的切空间恒定的$(m-1)$秩子漫游,使得它沿$\gamma $的切束与$\mathscr{D}$重合。特别是,我们给出了问题局部好求的充分条件,以及解的参数描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The geometric Cauchy problem for rank-one submanifolds
Given a smooth distribution $\mathscr{D}$ of $m$-dimensional planes along a smooth regular curve $\gamma $ in $\mathbb{R}^{m+n}$, we consider the following problem: to find an $m$-dimensional rank-one submanifold of $\mathbb{R}^{m+n}$, that is, an $(m-1)$-ruled submanifold with constant tangent space along the rulings, such that its tangent bundle along $\gamma $ coincides with $\mathscr{D}$. In particular, we give sufficient conditions for the local well-posedness of the problem, together with a parametric description of the solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信