反新曲率流与正质量定理的稳定性

IF 0.7 4区 数学 Q2 MATHEMATICS
Allen,Brian
{"title":"反新曲率流与正质量定理的稳定性","authors":"Allen,Brian","doi":"10.4310/cag.2023.v31.n10.a5","DOIUrl":null,"url":null,"abstract":"We study the stability of the Positive Mass Theorem (PMT) in the case where a sequence of regions of manifolds with positive scalar curvature $U_{T}^{i}\\subset M_{i}^{3}$ are foliated by a smooth solution to Inverse Mean Curvature Flow (IMCF) which may not be uniformly controlled near the boundary. Then if $\\partial U_{T}^{i} = \\Sigma _{0}^{i} \\cup \\Sigma _{T}^{i}$, $m_{H}(\\Sigma _{T}^{i}) \\rightarrow 0$ and extra technical conditions are satisfied we show that $U_{T}^{i}$ converges to a flat annulus with respect to Sormani-Wenger Intrinsic Flat (SWIF) convergence.","PeriodicalId":50662,"journal":{"name":"Communications in Analysis and Geometry","volume":"102 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse nean curvature flow and the stability of the positive mass theorem\",\"authors\":\"Allen,Brian\",\"doi\":\"10.4310/cag.2023.v31.n10.a5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the stability of the Positive Mass Theorem (PMT) in the case where a sequence of regions of manifolds with positive scalar curvature $U_{T}^{i}\\\\subset M_{i}^{3}$ are foliated by a smooth solution to Inverse Mean Curvature Flow (IMCF) which may not be uniformly controlled near the boundary. Then if $\\\\partial U_{T}^{i} = \\\\Sigma _{0}^{i} \\\\cup \\\\Sigma _{T}^{i}$, $m_{H}(\\\\Sigma _{T}^{i}) \\\\rightarrow 0$ and extra technical conditions are satisfied we show that $U_{T}^{i}$ converges to a flat annulus with respect to Sormani-Wenger Intrinsic Flat (SWIF) convergence.\",\"PeriodicalId\":50662,\"journal\":{\"name\":\"Communications in Analysis and Geometry\",\"volume\":\"102 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Analysis and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2023.v31.n10.a5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n10.a5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了正质量定理(PMT)在以下情况下的稳定性:具有正标量曲率 $U_{T}^{i}\subset M_{i}^{3}$ 的流形区域序列被反平均曲率流(IMCF)的光滑解所叶状化,而反平均曲率流在边界附近可能不是均匀受控的。那么,如果 $partial U_{T}^{i} = \Sigma _{0}^{i}\cup \Sigma _{T}^{i}$,$m_{H}(\Sigma _{T}^{i})\rightarrow 0$,并且满足额外的技术条件,我们就能证明 $U_{T}^{i}$ 收敛到一个与索马尼-温格内在平坦(SWIF)有关的平坦环面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse nean curvature flow and the stability of the positive mass theorem
We study the stability of the Positive Mass Theorem (PMT) in the case where a sequence of regions of manifolds with positive scalar curvature $U_{T}^{i}\subset M_{i}^{3}$ are foliated by a smooth solution to Inverse Mean Curvature Flow (IMCF) which may not be uniformly controlled near the boundary. Then if $\partial U_{T}^{i} = \Sigma _{0}^{i} \cup \Sigma _{T}^{i}$, $m_{H}(\Sigma _{T}^{i}) \rightarrow 0$ and extra technical conditions are satisfied we show that $U_{T}^{i}$ converges to a flat annulus with respect to Sormani-Wenger Intrinsic Flat (SWIF) convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Publishes high-quality papers on subjects related to classical analysis, partial differential equations, algebraic geometry, differential geometry, and topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信