$\overline{\partial}$的加权$L^{2}$估计值和多个复杂变量的日冕问题

Pub Date : 2024-07-29 DOI:10.4310/cag.2023.v31.n10.a3
Li,Song-Ying
{"title":"$\\overline{\\partial}$的加权$L^{2}$估计值和多个复杂变量的日冕问题","authors":"Li,Song-Ying","doi":"10.4310/cag.2023.v31.n10.a3","DOIUrl":null,"url":null,"abstract":"In the paper, we apply Hörmander's weighted $L^{2}$ estimate for $\\overline{\\partial }$ to study the Corona problem on the unit ball $B_{n}$ in ${\\mathbf{C}}^{n}$. We introduce a new holomorphic function space ${\\mathcal S}(B_{n})$ which is slightly small than $H^{\\infty}(B_{n})$. We can solve the Corona problems on ${\\mathcal S}(B_{n})$ instead of $H^{\\infty}(B_{n})$. We also provide a new proof of $H^{\\infty }\\cdot BMOA$ solution for the Corona problem which was first obtained by Varopoulos [41].","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted $L^{2}$ estimates for $\\\\overline{\\\\partial }$ and the Corona problem of several complex variables\",\"authors\":\"Li,Song-Ying\",\"doi\":\"10.4310/cag.2023.v31.n10.a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper, we apply Hörmander's weighted $L^{2}$ estimate for $\\\\overline{\\\\partial }$ to study the Corona problem on the unit ball $B_{n}$ in ${\\\\mathbf{C}}^{n}$. We introduce a new holomorphic function space ${\\\\mathcal S}(B_{n})$ which is slightly small than $H^{\\\\infty}(B_{n})$. We can solve the Corona problems on ${\\\\mathcal S}(B_{n})$ instead of $H^{\\\\infty}(B_{n})$. We also provide a new proof of $H^{\\\\infty }\\\\cdot BMOA$ solution for the Corona problem which was first obtained by Varopoulos [41].\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2023.v31.n10.a3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n10.a3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们应用赫曼德对 $\overline{\partial }$ 的加权 $L^{2}$ 估计来研究 ${\mathbf{C}}^{n}$ 中单位球 $B_{n}$ 上的日冕问题。我们引入了一个新的全形函数空间 ${mathcal S}(B_{n})$ ,它比 $H^{infty}(B_{n})$ 略小。我们可以在 ${\mathcal S}(B_{n})$ 而不是 $H^{\infty}(B_{n})$ 上求解日冕问题。我们还为日冕问题的 $H^{\infty }\cdot BMOA$ 解提供了新的证明,该证明由 Varopoulos [41] 首次获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Weighted $L^{2}$ estimates for $\overline{\partial }$ and the Corona problem of several complex variables
In the paper, we apply Hörmander's weighted $L^{2}$ estimate for $\overline{\partial }$ to study the Corona problem on the unit ball $B_{n}$ in ${\mathbf{C}}^{n}$. We introduce a new holomorphic function space ${\mathcal S}(B_{n})$ which is slightly small than $H^{\infty}(B_{n})$. We can solve the Corona problems on ${\mathcal S}(B_{n})$ instead of $H^{\infty}(B_{n})$. We also provide a new proof of $H^{\infty }\cdot BMOA$ solution for the Corona problem which was first obtained by Varopoulos [41].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信