{"title":"圆球形除法及其接触拓扑学","authors":"Li,Tian-Jun, Mak,Cheuk Yu, Min,Jie","doi":"10.4310/cag.2023.v31.n10.a2","DOIUrl":null,"url":null,"abstract":"This paper investigates the symplectic and contact topology associated to circular spherical divisors. We classify, up to toric equivalence, all concave circular spherical divisors $ D $ that can be embedded symplectically into a closed symplectic 4-manifold and show they are all realized as symplectic log Calabi-Yau pairs if their complements are minimal. We then determine the Stein fillability and rational homology type of all minimal symplectic fillings for the boundary torus bundles of such $D$. When $ D $ is anticanonical and convex, we give explicit Betti number bounds for Stein fillings of its boundary contact torus bundle.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circular spherical divisors and their contact topology\",\"authors\":\"Li,Tian-Jun, Mak,Cheuk Yu, Min,Jie\",\"doi\":\"10.4310/cag.2023.v31.n10.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the symplectic and contact topology associated to circular spherical divisors. We classify, up to toric equivalence, all concave circular spherical divisors $ D $ that can be embedded symplectically into a closed symplectic 4-manifold and show they are all realized as symplectic log Calabi-Yau pairs if their complements are minimal. We then determine the Stein fillability and rational homology type of all minimal symplectic fillings for the boundary torus bundles of such $D$. When $ D $ is anticanonical and convex, we give explicit Betti number bounds for Stein fillings of its boundary contact torus bundle.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/cag.2023.v31.n10.a2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cag.2023.v31.n10.a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了与圆球面骰子相关的交映拓扑学和接触拓扑学。我们对所有可以交映嵌入封闭交映 4-manifold的凹圆球卜元 $ D $ 进行了分类(直到环等价),并证明如果它们的补集是最小的,它们都可以实现为交映 log Calabi-Yau 对。然后,我们确定了这种 $D$ 的边界环束的所有最小交映填充的 Steinability 和有理同调类型。当 $ D $ 是反谐和凸时,我们给出了其边界接触环束的斯坦因填充的明确贝蒂数边界。
Circular spherical divisors and their contact topology
This paper investigates the symplectic and contact topology associated to circular spherical divisors. We classify, up to toric equivalence, all concave circular spherical divisors $ D $ that can be embedded symplectically into a closed symplectic 4-manifold and show they are all realized as symplectic log Calabi-Yau pairs if their complements are minimal. We then determine the Stein fillability and rational homology type of all minimal symplectic fillings for the boundary torus bundles of such $D$. When $ D $ is anticanonical and convex, we give explicit Betti number bounds for Stein fillings of its boundary contact torus bundle.