使用特征核的 MMD 训练金融时间序列生成模型

Lu Chung I, Julian Sester
{"title":"使用特征核的 MMD 训练金融时间序列生成模型","authors":"Lu Chung I, Julian Sester","doi":"arxiv-2407.19848","DOIUrl":null,"url":null,"abstract":"Generating synthetic financial time series data that accurately reflects\nreal-world market dynamics holds tremendous potential for various applications,\nincluding portfolio optimization, risk management, and large scale machine\nlearning. We present an approach for training generative models for financial\ntime series using the maximum mean discrepancy (MMD) with a signature kernel.\nOur method leverages the expressive power of the signature transform to capture\nthe complex dependencies and temporal structures inherent in financial data. We\nemploy a moving average model to model the variance of the noise input,\nenhancing the model's ability to reproduce stylized facts such as volatility\nclustering. Through empirical experiments on S&P 500 index data, we demonstrate\nthat our model effectively captures key characteristics of financial time\nseries and outperforms a comparable GAN-based approach. In addition, we explore\nthe application of the synthetic data generated to train a reinforcement\nlearning agent for portfolio management, achieving promising results. Finally,\nwe propose a method to add robustness to the generative model by tweaking the\nnoise input so that the generated sequences can be adjusted to different market\nenvironments with minimal data.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative model for financial time series trained with MMD using a signature kernel\",\"authors\":\"Lu Chung I, Julian Sester\",\"doi\":\"arxiv-2407.19848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Generating synthetic financial time series data that accurately reflects\\nreal-world market dynamics holds tremendous potential for various applications,\\nincluding portfolio optimization, risk management, and large scale machine\\nlearning. We present an approach for training generative models for financial\\ntime series using the maximum mean discrepancy (MMD) with a signature kernel.\\nOur method leverages the expressive power of the signature transform to capture\\nthe complex dependencies and temporal structures inherent in financial data. We\\nemploy a moving average model to model the variance of the noise input,\\nenhancing the model's ability to reproduce stylized facts such as volatility\\nclustering. Through empirical experiments on S&P 500 index data, we demonstrate\\nthat our model effectively captures key characteristics of financial time\\nseries and outperforms a comparable GAN-based approach. In addition, we explore\\nthe application of the synthetic data generated to train a reinforcement\\nlearning agent for portfolio management, achieving promising results. Finally,\\nwe propose a method to add robustness to the generative model by tweaking the\\nnoise input so that the generated sequences can be adjusted to different market\\nenvironments with minimal data.\",\"PeriodicalId\":501084,\"journal\":{\"name\":\"arXiv - QuantFin - Mathematical Finance\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.19848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.19848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生成能准确反映现实世界市场动态的合成金融时间序列数据,对于包括投资组合优化、风险管理和大规模机器学习在内的各种应用具有巨大的潜力。我们的方法利用签名变换的表现力来捕捉金融数据中固有的复杂依赖关系和时间结构。我们采用移动平均模型对噪声输入的方差进行建模,从而增强了模型再现诸如波动集群等风格化事实的能力。通过对标准普尔 500 指数数据的实证实验,我们证明我们的模型能有效捕捉金融时间序列的关键特征,并优于基于 GAN 的同类方法。此外,我们还探索了如何将生成的合成数据用于训练投资组合管理的强化学习代理,并取得了可喜的成果。最后,我们提出了一种方法,通过调整噪声输入来增加生成模型的鲁棒性,这样生成的序列就能以最少的数据适应不同的市场环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative model for financial time series trained with MMD using a signature kernel
Generating synthetic financial time series data that accurately reflects real-world market dynamics holds tremendous potential for various applications, including portfolio optimization, risk management, and large scale machine learning. We present an approach for training generative models for financial time series using the maximum mean discrepancy (MMD) with a signature kernel. Our method leverages the expressive power of the signature transform to capture the complex dependencies and temporal structures inherent in financial data. We employ a moving average model to model the variance of the noise input, enhancing the model's ability to reproduce stylized facts such as volatility clustering. Through empirical experiments on S&P 500 index data, we demonstrate that our model effectively captures key characteristics of financial time series and outperforms a comparable GAN-based approach. In addition, we explore the application of the synthetic data generated to train a reinforcement learning agent for portfolio management, achieving promising results. Finally, we propose a method to add robustness to the generative model by tweaking the noise input so that the generated sequences can be adjusted to different market environments with minimal data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信