图拉耶夫乘法在不可定向曲面的不可定向增厚中的结的类似物

Vladimir Tarkaev
{"title":"图拉耶夫乘法在不可定向曲面的不可定向增厚中的结的类似物","authors":"Vladimir Tarkaev","doi":"arxiv-2407.20715","DOIUrl":null,"url":null,"abstract":"This paper concerns pseudo-classical knots in the non-orientable manifold\n$\\hat{\\Sigma} =\\Sigma \\times [0,1]$, where $\\Sigma$ is a non-orientable surface\nand a knot $K \\subset \\hat{\\Sigma}$ is called pseudo-classical if $K$ is\norientation-preserving path in $\\hat{\\Sigma}$. For this kind of knot we\nintroduce an invariant $\\Delta$ that is an analogue of Turaev comultiplication\nfor knots in a thickened orientable surface. As its classical prototype,\n$\\Delta$ takes value in a polynomial algebra generated by homotopy classes of\nnon-contractible loops on $\\Sigma$, however, as a ground ring we use some\nsubring of $\\mathbb{C}$ instead of $\\mathbb{Z}$. Then we define a few homotopy,\nhomology and polynomial invariants, which are consequences of $\\Delta$,\nincluding an analogue of the affine index polynomial.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"197 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analogue of Turaev comultiplication for knots in non-orientable thickening of a non-orientable surface\",\"authors\":\"Vladimir Tarkaev\",\"doi\":\"arxiv-2407.20715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper concerns pseudo-classical knots in the non-orientable manifold\\n$\\\\hat{\\\\Sigma} =\\\\Sigma \\\\times [0,1]$, where $\\\\Sigma$ is a non-orientable surface\\nand a knot $K \\\\subset \\\\hat{\\\\Sigma}$ is called pseudo-classical if $K$ is\\norientation-preserving path in $\\\\hat{\\\\Sigma}$. For this kind of knot we\\nintroduce an invariant $\\\\Delta$ that is an analogue of Turaev comultiplication\\nfor knots in a thickened orientable surface. As its classical prototype,\\n$\\\\Delta$ takes value in a polynomial algebra generated by homotopy classes of\\nnon-contractible loops on $\\\\Sigma$, however, as a ground ring we use some\\nsubring of $\\\\mathbb{C}$ instead of $\\\\mathbb{Z}$. Then we define a few homotopy,\\nhomology and polynomial invariants, which are consequences of $\\\\Delta$,\\nincluding an analogue of the affine index polynomial.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"197 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.20715\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.20715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文涉及不可定向流形$\hat{Sigma} =\Sigma \times [0,1]$中的伪经典结,其中$\Sigma$是一个不可定向曲面,如果$K$是$\hat{Sigma}$中的保定向路径,那么一个结$K \子集 \hat{Sigma}$就被称为伪经典结。对于这种结,我们引入了一个不变量 $\Delta$ ,它是图拉耶夫乘法在加厚可定向曲面中的结的类似物。作为它的经典原型,$\Delta$ 在一个多项式代数中取值,这个多项式代数是由\Sigma$上的非收缩环的同调类生成的,然而,作为一个基环,我们使用了$\mathbb{C}$的某个子环,而不是$\mathbb{Z}$。然后,我们定义了一些同调、同构和多项式不变式,它们是 $\Delta$ 的后果,包括仿射指数多项式的类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An analogue of Turaev comultiplication for knots in non-orientable thickening of a non-orientable surface
This paper concerns pseudo-classical knots in the non-orientable manifold $\hat{\Sigma} =\Sigma \times [0,1]$, where $\Sigma$ is a non-orientable surface and a knot $K \subset \hat{\Sigma}$ is called pseudo-classical if $K$ is orientation-preserving path in $\hat{\Sigma}$. For this kind of knot we introduce an invariant $\Delta$ that is an analogue of Turaev comultiplication for knots in a thickened orientable surface. As its classical prototype, $\Delta$ takes value in a polynomial algebra generated by homotopy classes of non-contractible loops on $\Sigma$, however, as a ground ring we use some subring of $\mathbb{C}$ instead of $\mathbb{Z}$. Then we define a few homotopy, homology and polynomial invariants, which are consequences of $\Delta$, including an analogue of the affine index polynomial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信