尖头 Quandle 染色林科伊德的 Quivers

Jose Ceniceros, Max Klivans
{"title":"尖头 Quandle 染色林科伊德的 Quivers","authors":"Jose Ceniceros, Max Klivans","doi":"arxiv-2407.21606","DOIUrl":null,"url":null,"abstract":"We enhance the pointed quandle counting invariant of linkoids through the use\nof quivers analogously to quandle coloring quivers. This allows us to\ngeneralize the in-degree polynomial invariant of links to linkoids.\nAdditionally, we introduce a new linkoid invariant, which we call the in-degree\nquiver polynomial matrix. Lastly, we study the pointed quandle coloring quivers\nof linkoids of $(p,2)$-torus type with respect to pointed dihedral quandles.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pointed Quandle Coloring Quivers of Linkoids\",\"authors\":\"Jose Ceniceros, Max Klivans\",\"doi\":\"arxiv-2407.21606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We enhance the pointed quandle counting invariant of linkoids through the use\\nof quivers analogously to quandle coloring quivers. This allows us to\\ngeneralize the in-degree polynomial invariant of links to linkoids.\\nAdditionally, we introduce a new linkoid invariant, which we call the in-degree\\nquiver polynomial matrix. Lastly, we study the pointed quandle coloring quivers\\nof linkoids of $(p,2)$-torus type with respect to pointed dihedral quandles.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们通过使用类似于簇着色簇的簇来增强 linkoids 的尖簇计数不变量。此外,我们还引入了一个新的 linkoid 不变量,我们称之为 "in-degreequiver 多项式矩阵"。最后,我们研究了$(p,2)$-torus 类型的 linkoids 的尖二面曲着色 quiver。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pointed Quandle Coloring Quivers of Linkoids
We enhance the pointed quandle counting invariant of linkoids through the use of quivers analogously to quandle coloring quivers. This allows us to generalize the in-degree polynomial invariant of links to linkoids. Additionally, we introduce a new linkoid invariant, which we call the in-degree quiver polynomial matrix. Lastly, we study the pointed quandle coloring quivers of linkoids of $(p,2)$-torus type with respect to pointed dihedral quandles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信