阴影复杂性和三裂属

Hironobu Naoe, Masaki Ogawa
{"title":"阴影复杂性和三裂属","authors":"Hironobu Naoe, Masaki Ogawa","doi":"arxiv-2407.21265","DOIUrl":null,"url":null,"abstract":"The shadow-complexity is an invariant of closed $4$-manifolds defined by\nusing $2$-dimensional polyhedra called Turaev's shadows, which, roughly\nspeaking, measures how complicated a $2$-skeleton of the $4$-manifold is. In\nthis paper, we define a new version $\\mathrm{sc}_{r}$ of shadow-complexity\ndepending on an extra parameter $r\\geq0$, and we investigate the relationship\nbetween this complexity and the trisection genus $g$. More explicitly, we prove\nan inequality $g(W) \\leq 2+2\\mathrm{sc}_{r}(W)$ for any closed $4$-manifold $W$\nand any $r\\geq1/2$. Moreover, we determine the exact values of\n$\\mathrm{sc}_{1/2}$ for infinitely many $4$-manifolds, and also we classify all\nthe closed $4$-manifolds with $\\mathrm{sc}_{1/2}\\leq1/2$.","PeriodicalId":501271,"journal":{"name":"arXiv - MATH - Geometric Topology","volume":"87 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shadow-complexity and trisection genus\",\"authors\":\"Hironobu Naoe, Masaki Ogawa\",\"doi\":\"arxiv-2407.21265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The shadow-complexity is an invariant of closed $4$-manifolds defined by\\nusing $2$-dimensional polyhedra called Turaev's shadows, which, roughly\\nspeaking, measures how complicated a $2$-skeleton of the $4$-manifold is. In\\nthis paper, we define a new version $\\\\mathrm{sc}_{r}$ of shadow-complexity\\ndepending on an extra parameter $r\\\\geq0$, and we investigate the relationship\\nbetween this complexity and the trisection genus $g$. More explicitly, we prove\\nan inequality $g(W) \\\\leq 2+2\\\\mathrm{sc}_{r}(W)$ for any closed $4$-manifold $W$\\nand any $r\\\\geq1/2$. Moreover, we determine the exact values of\\n$\\\\mathrm{sc}_{1/2}$ for infinitely many $4$-manifolds, and also we classify all\\nthe closed $4$-manifolds with $\\\\mathrm{sc}_{1/2}\\\\leq1/2$.\",\"PeriodicalId\":501271,\"journal\":{\"name\":\"arXiv - MATH - Geometric Topology\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Geometric Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.21265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.21265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阴影复杂度是闭合$4$-manifolds的一个不变量,它是通过使用称为图拉耶夫阴影的2$维多面体定义的,粗略地说,它衡量了$4$-manifolds的2$骨架的复杂程度。在本文中,我们定义了阴影复杂性的一个新版本 $\mathrm{sc}_{r}$,它取决于一个额外的参数 $r\geq0$,我们还研究了这个复杂性与三剖分属$g$之间的关系。更明确地说,我们证明了一个不等式 $g(W) \leq 2+2\mathrm{sc}_{r}(W)$ 对于任意封闭的 $4$-manifold$W$和任意 $r\geq1/2$。此外,我们还确定了无限多 $4$-manifolds 的 $mathrm{sc}_{1/2}$ 的精确值,并对所有具有 $mathrm{sc}_{1/2}\leq1/2$ 的封闭 $4$-manifolds 进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shadow-complexity and trisection genus
The shadow-complexity is an invariant of closed $4$-manifolds defined by using $2$-dimensional polyhedra called Turaev's shadows, which, roughly speaking, measures how complicated a $2$-skeleton of the $4$-manifold is. In this paper, we define a new version $\mathrm{sc}_{r}$ of shadow-complexity depending on an extra parameter $r\geq0$, and we investigate the relationship between this complexity and the trisection genus $g$. More explicitly, we prove an inequality $g(W) \leq 2+2\mathrm{sc}_{r}(W)$ for any closed $4$-manifold $W$ and any $r\geq1/2$. Moreover, we determine the exact values of $\mathrm{sc}_{1/2}$ for infinitely many $4$-manifolds, and also we classify all the closed $4$-manifolds with $\mathrm{sc}_{1/2}\leq1/2$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信