Eileen Marie Hanna, Ghadi El Hasbani, Danielle Azar
{"title":"从表达数据中识别失调基因子网络的蚁群优化技术","authors":"Eileen Marie Hanna, Ghadi El Hasbani, Danielle Azar","doi":"10.1186/s12859-024-05871-x","DOIUrl":null,"url":null,"abstract":"High-throughput experimental technologies can provide deeper insights into pathway perturbations in biomedical studies. Accordingly, their usage is central to the identification of molecular targets and the subsequent development of suitable treatments for various diseases. Classical interpretations of generated data, such as differential gene expression and pathway analyses, disregard interconnections between studied genes when looking for gene-disease associations. Given that these interconnections are central to cellular processes, there has been a recent interest in incorporating them in such studies. The latter allows the detection of gene modules that underlie complex phenotypes in gene interaction networks. Existing methods either impose radius-based restrictions or freely grow modules at the expense of a statistical bias towards large modules. We propose a heuristic method, inspired by Ant Colony Optimization, to apply gene-level scoring and module identification with distance-based search constraints and penalties, rather than radius-based constraints. We test and compare our results to other approaches using three datasets of different neurodegenerative diseases, namely Alzheimer’s, Parkinson’s, and Huntington’s, over three independent experiments. We report the outcomes of enrichment analyses and concordance of gene-level scores for each disease. Results indicate that the proposed approach generally shows superior stability in comparison to existing methods. It produces stable and meaningful enrichment results in all three datasets which have different case to control proportions and sample sizes. The presented network-based gene expression analysis approach successfully identifies dysregulated gene modules associated with a certain disease. Using a heuristic based on Ant Colony Optimization, we perform a distance-based search with no radius constraints. Experimental results support the effectiveness and stability of our method in prioritizing modules of high relevance. Our tool is publicly available at github.com/GhadiElHasbani/ACOxGS.git.","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ant colony optimization for the identification of dysregulated gene subnetworks from expression data\",\"authors\":\"Eileen Marie Hanna, Ghadi El Hasbani, Danielle Azar\",\"doi\":\"10.1186/s12859-024-05871-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-throughput experimental technologies can provide deeper insights into pathway perturbations in biomedical studies. Accordingly, their usage is central to the identification of molecular targets and the subsequent development of suitable treatments for various diseases. Classical interpretations of generated data, such as differential gene expression and pathway analyses, disregard interconnections between studied genes when looking for gene-disease associations. Given that these interconnections are central to cellular processes, there has been a recent interest in incorporating them in such studies. The latter allows the detection of gene modules that underlie complex phenotypes in gene interaction networks. Existing methods either impose radius-based restrictions or freely grow modules at the expense of a statistical bias towards large modules. We propose a heuristic method, inspired by Ant Colony Optimization, to apply gene-level scoring and module identification with distance-based search constraints and penalties, rather than radius-based constraints. We test and compare our results to other approaches using three datasets of different neurodegenerative diseases, namely Alzheimer’s, Parkinson’s, and Huntington’s, over three independent experiments. We report the outcomes of enrichment analyses and concordance of gene-level scores for each disease. Results indicate that the proposed approach generally shows superior stability in comparison to existing methods. It produces stable and meaningful enrichment results in all three datasets which have different case to control proportions and sample sizes. The presented network-based gene expression analysis approach successfully identifies dysregulated gene modules associated with a certain disease. Using a heuristic based on Ant Colony Optimization, we perform a distance-based search with no radius constraints. Experimental results support the effectiveness and stability of our method in prioritizing modules of high relevance. Our tool is publicly available at github.com/GhadiElHasbani/ACOxGS.git.\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-024-05871-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05871-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Ant colony optimization for the identification of dysregulated gene subnetworks from expression data
High-throughput experimental technologies can provide deeper insights into pathway perturbations in biomedical studies. Accordingly, their usage is central to the identification of molecular targets and the subsequent development of suitable treatments for various diseases. Classical interpretations of generated data, such as differential gene expression and pathway analyses, disregard interconnections between studied genes when looking for gene-disease associations. Given that these interconnections are central to cellular processes, there has been a recent interest in incorporating them in such studies. The latter allows the detection of gene modules that underlie complex phenotypes in gene interaction networks. Existing methods either impose radius-based restrictions or freely grow modules at the expense of a statistical bias towards large modules. We propose a heuristic method, inspired by Ant Colony Optimization, to apply gene-level scoring and module identification with distance-based search constraints and penalties, rather than radius-based constraints. We test and compare our results to other approaches using three datasets of different neurodegenerative diseases, namely Alzheimer’s, Parkinson’s, and Huntington’s, over three independent experiments. We report the outcomes of enrichment analyses and concordance of gene-level scores for each disease. Results indicate that the proposed approach generally shows superior stability in comparison to existing methods. It produces stable and meaningful enrichment results in all three datasets which have different case to control proportions and sample sizes. The presented network-based gene expression analysis approach successfully identifies dysregulated gene modules associated with a certain disease. Using a heuristic based on Ant Colony Optimization, we perform a distance-based search with no radius constraints. Experimental results support the effectiveness and stability of our method in prioritizing modules of high relevance. Our tool is publicly available at github.com/GhadiElHasbani/ACOxGS.git.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.